
AVB-aware Routing and Scheduling for Critical Traffic in
Time-sensitive Networks with Preemption

Aldin Berisa

Mälardalen University

Västerås, Sweden

aldin.berisa@mdu.se

Luxi Zhao
∗

Beihang University

Beijing, China

zhaoluxi@buaa.edu.cn

Silviu S. Craciunas

TTTech Computertechnik AG

Vienna, Austria

silviu.craciunas@tttech.com

Mohammad Ashjaei

Mälardalen University

Västerås, Sweden

mohammad.ashjaei@mdu.se

Saad Mubeen

Mälardalen University

Västerås, Sweden

saad.mubeen@mdu.se

Masoud Daneshtalab

Mälardalen University

Västerås, Sweden

masoud.daneshtalab@mdu.se

Mikael Sjödin

Mälardalen University

Västerås, Sweden

mikael.sjodin@mdu.se

ABSTRACT
The Time-Sensitive Network (TSN) amendments and protocols add

capabilities on top of standard 802.1 Ethernet for guaranteeing the

timeliness of both (isochronous) scheduled traffic (ST) and shaped

(audio-video) communication (AVB) in distributed applications. ST

streams are guaranteed via an offline computed schedule control-

ling the time-aware gate mechanism of IEEE 802.1Qbv, while AVB

real-time streams are shaped via a credit-based shaper (CBS) and

scheduler with lower-priority than ST. Although the two traffic

classes use different TSN mechanisms, they are interrelated as the

ST traffic class schedule influences the latency of AVB traffic.

In this paper, we propose a method for the integration of the

ST schedule synthesis with an analysis for the AVB class featuring

IEEE 802.1Qbu frame preemption under different configurations to

reduce the interference between the two classes. We first present a

new worst-case response-time (WCRT) analysis for the AVB traffic

class in TSN networks with preemption, considering an arbitrary

number of AVB queues and different configurations for the CBS

credit behavior. Then, we integrate the creation of ST schedule ta-

bles with the schedulability analysis of AVB traffic using a heuristic

algorithm featuring frame preemption and a novel routing mecha-

nism aimed at maximizing AVB schedulability. Finally, we evaluate

our approach using both real-world and synthetic use cases show-

ing the efficiency both in terms of schedule creation runtime and in

terms of increasing the schedulability of lower-priority AVB traffic.

CCS CONCEPTS
• Computer systems organization→ Dependable and fault-
tolerant systems and networks.

KEYWORDS
Time sensitive networking, Scheduling, AVB, Network calculus.

∗
Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RTNS ’22, June 7–8, 2022, Paris, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9650-9/22/06.

https://doi.org/10.1145/3534879.3534926

ACM Reference Format:
Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad

Mubeen, Masoud Daneshtalab, and Mikael Sjödin. 2022. AVB-aware Rout-

ing and Scheduling for Critical Traffic in Time-sensitive Networks with

Preemption. In Proceedings of the 30th International Conference on Real-Time
Networks and Systems (RTNS ’22), June 7–8, 2022, Paris, France. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3534879.3534926

1 INTRODUCTION
Time-sensitive Networks (TSN) [13] introduce standardized real-

time mechanisms for safety-critical communication over 802.1Q

Ethernet networks. TSN is an umbrella term for a whole range

of new amendments and protocols on top of IEEE 802.1, such as

time synchronization (IEEE 802.1AS-rev), frame preemption (IEEE

802.1Qbu), frame replication/stream redundancy (IEEE 802.1CB),

time-aware frame scheduling (IEEE 802.1Qbv), and many others.

Depending on the application type and domain, different safety-

critical traffic classes with different levels of real-time requirements

can coexist in the same network. The isochronous traffic class

(c.f. [2, 3]) usually requires guaranteed latency and bounded (or

even zero) jitter and generally coincides with the scheduled traffic

(ST) class. The ST traffic is dispatched and forwarded within the

network according to a static schedule table called the Gate-Control

List (GCL), which is computed offline through exact algorithms (e.g.,

SMT- or ILP-based synthesis [6, 28, 33, 42]) or heuristics (e.g. [10,

23, 32]). Sporadic communication that requires bounded end-to-end

latency but is not as critical as the isochronous traffic class (e.g.,

Audio-Video streams) falls into the audio-video-bridging (AVB)

stream class. There can be multiple AVB traffic classes encoded in

different priorities and shaped using a Constant-Bandwidth Server

(CBS) mechanism. The standard approach is to use a formal analysis

(e.g., network calculus [40]) for these traffic classes in order to

determine (pessimistic) worst-case upper bounds on the response

time of individual AVB streams.

Although the two traffic classes are handled using different mech-

anisms, they are interrelated as the schedule for the ST traffic class

has an influence on the latency that AVB traffic experiences since,

normally, the ST traffic is either placed in higher-priority queues

or the timed-gates are closed for the AVB class if the ST class is

already transmitting (c.f. [6]). In order to reduce this interference,

the frame preemption mechanism introduced in IEEE 802.1Qbu

can be employed, which allows certain traffic classes defined as

https://doi.org/10.1145/3534879.3534926
https://doi.org/10.1145/3534879.3534926

RTNS ’22, June 7–8, 2022, Paris, France Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, and Mikael Sjödin

express (non-preemptable) to preempt frames of other traffic classes

that are configured as preemptable within certain bounds (c.f. [1]).

When AVB traffic is marked as preemptable, the latency bounds

may be improved since AVB frames can better utilize the gaps

between higher-priority ST frames at the expense of added pre-

emption overhead. Most scheduling algorithms for the ST class do

not consider the impact on the AVB (or lower-priority) traffic at all

(e.g. [6, 22, 28]), while others attempt to create ST schedules that

either guarantee the latency requirements of AVB traffic (e.g. [10])

or improve QoS metrics for lower-priority best-effort or AVB traffic

(e.g. [11]). Additionally, most other methods do not consider the im-

pact (and benefits) of adding preemption to the AVB traffic class. For

many systems where the AVB traffic leads to high link utilization,

it is very unlikely to find a schedule such that also AVB deadlines

are fulfilled. The reduced AVB schedulability is partially due to the

inherent pessimism of the WCRT analysis methods but also due

to the non-preemptive mode for AVB since the only placement of

ST schedule slots that is possible may not leave big enough gaps

to fit unfragmented AVB frames. Hence, the schedulability of such

systems may greatly benefit from allowing preemption in the AVB

traffic class.

In this paper, we study the integration of the ST schedule syn-

thesis with an analysis for the AVB class featuring preemption to

reduce or limit the interference between the two classes. We first

derive new worst-case response time (WCRT) bounds for the AVB

traffic class in TSN networks with preemption, considering the stan-

dard credit behavior during the preemption overhead. Then, we use

this new WCRT result to integrate the creation of GCL schedules

for ST traffic with the schedulability analysis of AVB traffic. With

our heuristic approach, we aim to synthesize correct ST schedules

while at the same time guaranteeing the latency of the AVB traffic

when preemption is enabled. The main contributions of the paper

are as follows:

• we develop a novel Network Calculus-based analysis for

TSN networks considering frame preemption with HOLD

and RELEASE mechanism, which we use in our scheduling

approach to improve the schedulability of AVB streams;

• we develop a heuristic algorithm based on [10] featuring

frame preemption and an efficient routing mechanism to

increase the chance of obtaining a better schedule for ST;

• we evaluate the newly proposed approach on a realistic use

case aswell as on synthetic networks to show co-schedulability

of both ST and AVB traffic when preemption is enabled.

After a review of related work in Section 2, we introduce the

TSN network and system model in Section 3. We develop the novel

NC-based analysis for the preemptive model with Hold/Release

mechanism in Section 4. We propose the heuristic algorithm for ST

schedules in Section 5. We show the performance of our approach

in Section 6 and conclude the paper in Section 7.

2 RELATEDWORK
The scheduling problem for the ST traffic class of TSN has been stud-

ied extensively via heuristics in [20, 22–24, 32] or exact methods

like ILP or SMT [6, 8, 28, 33, 41, 42]. These results do not consider

the impact of (multiple) scheduled ST traffic classes on the AVB

traffic class(es). Taking into account the impact of ST schedules

on AVB traffic is a non-trivial problem since exact algorithms for

synthesizing ST schedules based on, e.g., ILP or SMT solvers cannot

be directly extended to include a network-calculus formulation

within the first-order logic formulation and usually contain a feed-

back loop that guides the solver via optimization criteria [9]. Hence,

while not being optimal, heuristic approaches are usually used since

they can be extended easily to include analysis methods for AVB

based on Network Calculus (NC) [18] or worst-case response time

analysis (WCRT) [19], although most of them do not feature the

preemptive model (e.g. [10, 11]). The work in [9] describes a feed-

back mechanism (via network calculus) for scheduling ST traffic in

TTEthernet such that the deadlines of non-preemptable RC (AVB)

traffic are fulfilled. Similarly, the work in [11] looks at scheduling

TSN traffic such that the porosity of the ST timeline is increased,

thereby increasing the QoS behavior of AVB traffic. However, the

work in [11] does not consider preemption. The heuristic approach

presented in [10] for AVB-aware routing and scheduling of TSN

networks also does not feature the preemptive model for TSN.

The work in [1] presents simulations for the standardized and a

novel preemption mode. Nevertheless, simulation results cannot

be used for the schedulability analysis as the corner cases can-

not be covered. Thiele et al. [31] presents the formal worst-case

timing analysis for frame preemption supporting TSN/GCL+SP.

In [40], authors propose the Network Calculus (NC)-based method

to support both the non-preemption and the preemption without

HOLD/RELEASE modes for the TSN/GCL+CBS architecture. More-

over, the NC-based analysis method under the preemption with

HOLD/RELEASE mode for TSN/GCL+CBS is included in the tech-

nical report [7]. However, the credit behavior during overheads

was assumed to be frozen, which is not following the standard, and

the effect of overhead on credit bounds for Audio-Video-Bridging

(AVB) traffic is not considered.

In [19], a schedulability analysis method has been proposed con-

sidering the frame preemption mechanism. However, the analysis

assumes only two levels of AVB traffic and does not consider a

general model with different combinations of credit behavior. The

analysis in this paper is based on the Network Calculus model and

considers the Hold and Release mechanisms under various modes

for credit behavior.

Finally, in a recent work [43] preemption support is investigated

for ST traffic (i.e., where scheduled queues can be defined as pre-

emptible), showing that it may increase ST schedulability. An SMT

formulation of the correctness constraints for ST classes with pre-

emption is given and solved using exact methods and heuristics.

Our work addresses the preemption of AVB traffic classes while ST

queues are always configured as express. An interesting direction

for future work may be to combine the approach in [43] with our

method to enable preemption both for ST and AVB traffic classes.

3 TSN NETWORK AND DEVICE MODEL
Timing guarantees for the ST traffic class are possible in TSN via the

clock synchronization protocol (IEEE 802.1AS), providing a com-

mon clock reference to all devices, and the timed-gate mechanism

defined in IEEE 802.1Qbv, which enforces the transmission instants

of ST streams (flows) encoded in so-called Gate-Control List (GCL)

schedules. An ST or AVB stream is a real-time communication of a

AVB-aware Routing and Scheduling for Critical Traffic in Time-sensitive Networks with Preemption RTNS ’22, June 7–8, 2022, Paris, France

"TTTech - Internal"

Port A
(ingress)

Port B
(ingress)

Sw
itching fabric

Priority filter

Port C
(egress)

…

BE queues

ST queues

AVB queues

GCLtimed gates

Figure 1: Simplified TSN switch representation

predefined payload size being transmitted from one talker (sender)

to a single or multiple listeners (receivers). While both ST and AVB

streams have a requirement on the maximum latency from talker

to the listener(s), ST streams have more stringent requirements in

terms of jitter and determinism of transmission, usually belonging

to the periodic isochronous traffic class, and AVB traffic is usually

of lower criticality and has sporadic activation [2, 3].

Figure 1 presents a simplified representation of a TSN-capable

switch. Streams arriving at the ingress ports (A and B) will be routed

to one of the available egress ports (in our example, port C). The

switching fabric selects the mapping of input to output ports for

a given stream (in our simplified example representation, we only

depict one egress port). After the routing to an egress port, the

priority filter determines in which traffic class (queue) the frame(s)

of the stream will be enqueued. Out of the 8 available queues, some

will be dedicated to ST traffic (ST queues) [6] while others will

enqueue AVB streams (AVB queues). The lowest-priority queues are

reserved for non-critical best-effort traffic (BE queues). We note that

our method works with more than two AVB classes, unlike other

approaches. When using the 802.1Qbv Time-Aware Shaper (TAS),

each queue has a timed-gate associated with it which precedes the

transmission selection based on queue priorities. A timed-gate can

be either open (o) or closed (c), allowing or prohibiting frames from

the respective queue to be sent. When multiple non-empty queues

are simultaneously open, the frame(s) from the highest-priority

queue will be sent. Before a gate closes, the implicit “guard band”

(GB) mechanism only allows sending if there is enough time until

the closing of the gate to send the next frame in the queue when

considering the non-preemption mode.

The IEEE 802.1Qbu mechanism enables each traffic class (queue)

to be defined as either express or preemptable. Usually, AVB and BE

queues are defined as preemptable, while ST queues are configured

as express. Moreover, ST schedules implement an exclusive gating

between ST queues, i.e., when one ST queue is open, all others are

closed, making preemption within the ST class irrelevant [6]. When

using preemption, the transmission of a preemptable frame can be

interrupted by an express frame within some minimum fragment

size given by the minimum Ethernet packet size. When guard-band

(GB) or exclusive gating is not used, the transmission latency for

express frames may be reduced, and the latency of preemptable

frames may increase in addition to the added preemption overhead.

However, GB or exclusive gating is usually enabled to achieve the

required deterministic temporal behavior of the isochronous ST

class. In this case, while the ST traffic is not affected by preemption,

the response time of AVB (or lower-priority preemptable) frames

may be significantly improved due to fragments of the AVB frames

being able to fit between ST schedule slots (c.f. Figure 2).

There are two versions for the preemption model in TSN [19]:

• The preemption with theHOLD/RELEASEmechanism allows

an explicit “guard band” (GB) to be placed before the open-

ing of an ST queue, thereby not allowing any lower priority

traffic that is in transmission to delay ST traffic. However,

the bandwidth loss is lower than under the non-preemptive

model since the guarded time interval must only fit a frag-

ment of the non-preemptable frame instead of the whole

frame.

• The preemption without the HOLD/RELEASE mechanism

allows lower-priority frames to transmit up to 123 bytes after

the opening of the ST queue, thereby potentially delaying

the transmission of ST frames and adding jitter to ST traffic.

Thework in [1] introduced a novel preemptionmode, which com-

pared to the standard mode [14], provides a lower average response

time for high-priority traffic with the downside of higher average

response time for lower-priority traffic. This can be achieved by

allowing higher-priority preemptable traffic to initiate transmis-

sion after a preemption by express traffic while the transmission of

lower-priority traffic is already interrupted.

The assignment of streams to traffic types (ST, AVB) is defined at

design time and remains fixed. For ST traffic, we also assume that

the GCL is an input to the network calculus analysis, i.e., the NC

analysis works with given gate opening and closing times within a

known GCL period (𝑝ℎ
GCL

). For an AVB stream 𝜏𝑘 , we assume that

the AVB Class M𝑖 , the frame size 𝑙𝑘 , and the minimum interarrival

time 𝑝𝑘 from the talker ES are given. Moreover, we also assume

that the maximum BE frame size 𝑙max

𝐵𝐸
is also given.

4 NETWORK CALCULUS ANALYSIS FOR
PREEMPTIONWITH HOLD/RELEASE

In this section, we build upon the timing analysis results of the non-

preemptive mode from [39] and the results from [7, 40], extending

them with a timing analysis for an arbitrary number of AVB classes

in the preemptive mode with both frozen and non-frozen credit

during the guard band interval. As is typical in systems requiring

deterministic ST traffic transmission [6, 28, 39], we assume that ST,

AVB, and BE traffic are isolated in their own queues (traffic classes)

and that the gates for the AVB and BE (preemptible) queues are

open in a mutually exclusive fashion to the gates of the ST queues.

Frames that are smaller than or equal to 𝑙max

nPr
= 123 bytes in

length cannot be preempted since the minimum preemptible frame

size is 𝑙min

Pr
= 124 bytes. Therefore, the guard band interval in

preemptive mode is reduced to 𝐿GB = (𝑙max

nPr
+ 𝑙+

𝐼𝐹𝐺
)/𝐶 = (123 +

20)/𝐶 , including fragmentation overhead and interframe gap (IFG)

duration. During the guard band interval, a frame can either be

preempted or finish its transmission [7]. Note that due to the gate

open state of AVB traffic during the guard band, the credit of the

credit-based shaper (CBS) increases. This is due to the non-frozen

behavior described in the 802.1Q [14] standard (c.f. Figure 3), which

has already been considered for the performance analysis with the

RTNS ’22, June 7–8, 2022, Paris, France Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, and Mikael Sjödin

Table 1: Summary of notation.

Symbol Meaning

𝐶 Physical link rate

𝑙max

nPr
The maximum non-preemptable frame size (123 bytes)

𝑙min

Pr
The minimum preemptable frame size (124 bytes)

𝐿GB Guard band size with HOLD/RELEASE (143 bytes/C)

𝑙+
𝐼𝐹𝐺

Preemption overhead (20 bytes)

𝑙+
𝐹𝐶𝑆

MAC DA, MAC SA, FCS frame overhead (22 bytes)

𝑙𝐹𝐶𝑆 Overhead of FCS for a frame (4 bytes)

𝑙
F,min

payload
Min payload (42 bytes) of the first fragment of a preempt-

able frame

𝑙
NF,min

payload
Min payload (60 bytes) for the subsequent fragments of a

preemptable frame

𝑙𝑂𝐻 Overhead (24 bytes) due to preemption

ℎ Output port of a node

M𝑖 Priority/Class of AVB traffic

𝑄M𝑖
Queue for AVB Class𝑀𝑖

𝑄≤𝑖
𝐴𝑉𝐵

AVB queues with priority higher than or equal to M𝑖

𝑛h
𝐶𝐵𝑆

The number of priorities for AVB traffic

𝛽
h,[PrH/R]
M𝑖

(𝑡) Min-plus minimum service curve for AVB Class M𝑖 under

preemption with HOLD/RELEASE

idSlM𝑖
, sdSlM𝑖

Idle and send slopes of the AVB class M𝑖

𝑐max

M𝑖
, 𝑐min

M𝑖
Upper and lower bounds of credit for AVB Class M𝑖

𝛼h

ST
(𝑡) Arrival curve for ST traffic

𝑜h
𝑖
, 𝐿h

ST,𝑖
Starting time and duration of 𝑖𝑡ℎ ST window on port h

𝑜h
𝑗,𝑖

Relative offset 𝑖𝑡ℎ and 𝑗𝑡ℎ ST windows on port h, i.e.,

𝑜h
𝑗
− 𝑜h

𝑖

𝑝h
GCL

GCL period on port h

𝑁 h

ST
Number of ST windows within the GCL period

𝛼
h,M𝑖
OH
(𝑡) Arrival curve with respect to preemption overheads

𝑙
h,max

M𝑖
The maximum frame of AVB Class M𝑖 on port h

𝑙
h,max

M𝑖 ,payload
The payload of the frame 𝑙

h,max

M𝑖

𝑙
h,max

M𝑖 ,payload
Leftover payload that has not been transmitted

𝑙
h,max

≤𝑖 , 𝑙
h,min

≤𝑖 Max and min AVB frame size with priority ≥ M𝑖 on h

𝑙
h,max

>𝑖
Max AVB frame size with priority lower than M𝑖 on h

𝑙
h,M𝑖
OH, 𝑗

Preemption overhead after 𝑗𝑡ℎ ST window on port h

𝑛
h,M𝑖
Pr

The max preemption times of a frame of AVB Class M𝑖

𝐿
h,M𝑖
GB, 𝑗

Guard band duration before 𝑗𝑡ℎ ST window on port h

𝜎
h,M𝑖
GB

, 𝜌
h,M𝑖
GB

Burst and rate of linear arrival curve of guard band dura-

tion

Δ𝑡M𝑖
Transmission duration of frames with priority M𝑖

Δ𝑡<𝑖
AVB

Duration of higher priority frames from𝑄<𝑖
AVB

Δ𝑡LP Duration of a lower priority frame from𝑄>𝑖
AVB

or𝑄BE

Δ𝑡GB Guard band duration

Δ𝑡<𝑖
OH

Overhead duration due to higher priority preempted

frames

Δ𝑡M𝑖
OH

Overhead duration due to preempted frames of priority

M𝑖

Δ𝑡ST Time slots reserved for ST traffic

non-preemption integration mode in [39]. A preemption overhead

𝑙OH = 24 bytes [31] will be added to each fragment of a preempted

frame. As described before, the preemption with HOLD/RELEASE

mechanism will prevent the ST window from being interfered with

by the preemptible traffic while reducing the impact of the GB+ST

duration on the link bandwidth that is available to preemptible

traffic. Table 1 summarizes the notations used in this paper.

"TTTech - Internal"

t

Frame arrivals
ST

deadline

guard band
(GB)

AVB frame
ST frame

AVB
deadline

AVB frame
fragment 1

AVB frame
fragment 2

preemption
overhead

a) without guard band

b) no preemption

c) preemption with
HOLD/RELEASE

Transmission:

<latexit sha1_base64="XjwAn/YescdMH+tONQs3wx0u9EM=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGWIhRYWEcwHJGfY2+wla/Z2j909IRz5DzYWitj6f+z8N26SKzTxwcDjvRlm5gUxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHQ19VtPVGkmxb0Zx9SP8ECwkBFsrNS8fUiva5NeseSW3RnQMvEyUoIM9V7xq9uXJImoMIRjrTueGxs/xcowwumk0E00jTEZ4QHtWCpwRLWfzq6doBOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhpZ8yESeGCjJfFCYcGYmmr6M+U5QYPrYEE8XsrYgMscLE2IAKNgRv8eVl0jwre+flyl2lVK1lceThCI7hFDy4gCrcQB0aQOARnuEV3hzpvDjvzse8NedkM4fwB87nDzpsjuo=</latexit>

LGB

Figure 2: Frame Transmission in Preemption with
HOLD/RELEASE

"TTTech - Internal"

<latexit sha1_base64="048EOsDqYz5Fl0p1SIN8QCoxU2Q=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrulqMeiFy9CBfsh7bpk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2dldW19Y7OwVdze2d3bLx0ctnScKkKbJOax6oRYU84kbRpmOO0kimIRctoOR9dTv/1ElWaxvDfjhPoCDySLGMHGSg9RkN0G1cmjF5TKbsWdAS0TLydlyNEISl+9fkxSQaUhHGvd9dzE+BlWhhFOJ8VeqmmCyQgPaNdSiQXVfjY7eIJOrdJHUaxsSYNm6u+JDAutxyK0nQKboV70puJ/Xjc10aWfMZmkhkoyXxSlHJkYTb9HfaYoMXxsCSaK2VsRGWKFibEZFW0I3uLLy6RVrXjnldpdrVy/yuMowDGcwBl4cAF1uIEGNIGAgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wc0N5AH</latexit>

f1
M2

<latexit sha1_base64="Kp6jmwcXjrbJm5RfhOmqz/zg3pg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxW7Be0S8mm2TY2myxJVihL/4MXD4p49f9489+YbfegrQ8GHu/NMDMviDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqa5koQltEcqm6AdaUM0FbhhlOu7GiOAo47QST28zvPFGlmRRNM42pH+GRYCEj2FipHQ7Sh+ZsUK64VXcOtEq8nFQgR2NQ/uoPJUkiKgzhWOue58bGT7EyjHA6K/UTTWNMJnhEe5YKHFHtp/NrZ+jMKkMUSmVLGDRXf0+kONJ6GgW2M8JmrJe9TPzP6yUmvPZTJuLEUEEWi8KEIyNR9joaMkWJ4VNLMFHM3orIGCtMjA2oZEPwll9eJe2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hACwg8wjO8wpsjnRfn3flYtBacfOYY/sD5/AGRgI8j</latexit>

fST

<latexit sha1_base64="i3PXwtt7yp8Eb3THwSC0vw6ue1w=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh5LRfBYwX5Au5Rsmm1js8mSZIWy9D948aCIV/+PN/+N2XYP2vpg4PHeDDPzgpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wucn8zhNVmknxYKYx9SM8EixkBBsrtcNB2ridDcoVt+rOgVaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/XR+7QydWWWIQqlsCYPm6u+JFEdaT6PAdkbYjPWyl4n/eb3EhNd+ykScGCrIYlGYcGQkyl5HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3vLLq6R9UfUuq7X7WqXeyOMowgmcwjl4cAV1uIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx9gz48D</latexit>

fBE

<latexit sha1_base64="OtUn6X73+NauiggBQJR5NSMu00Q=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXrwIFeyHtOuSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aOk4VYQ2Scxj1QmxppxJ2jTMcNpJFMUi5LQdjq6nfvuJKs1ieW/GCfUFHkgWMYKNlR6iILsNvMmjF5QrbtWdAS0TLycVyNEIyl+9fkxSQaUhHGvd9dzE+BlWhhFOJ6VeqmmCyQgPaNdSiQXVfjY7eIJOrNJHUaxsSYNm6u+JDAutxyK0nQKboV70puJ/Xjc10aWfMZmkhkoyXxSlHJkYTb9HfaYoMXxsCSaK2VsRGWKFibEZlWwI3uLLy6R1VvXOq7W7WqV+lcdRhCM4hlPw4ALqcAMNaAIBAc/wCm+Ocl6cd+dj3lpw8plD+APn8wcysJAG</latexit>

f1
M1

<latexit sha1_base64="qbjZfLmntnXJ5przQ8HlTHOopJ4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9nVoh6LXrwIFeyHtOuSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oNUHA4/3ZpiZFyacaeO6X05haXllda24XtrY3NreKe/utXScKkKbJOax6oRYU84kbRpmOO0kimIRctoOR1dTv/1IlWaxvDPjhPoCDySLGMHGSvdRkN0Ep5MHLyhX3Ko7A/pLvJxUIEcjKH/2+jFJBZWGcKx113MT42dYGUY4nZR6qaYJJiM8oF1LJRZU+9ns4Ak6skofRbGyJQ2aqT8nMiy0HovQdgpshnrRm4r/ed3URBd+xmSSGirJfFGUcmRiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLIheIsv/yWtk6p3Vq3d1ir1yzyOIhzAIRyDB+dQh2toQBMICHiCF3h1lPPsvDnv89aCk8/swy84H981vpAI</latexit>

f1
M3

<latexit sha1_base64="G5fa7AsfCl9oeQIcebrLbrLz7R0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiFy9CRfuBbQibzaZdutmE3Y1QQv+FFw+KePXfePPfuE1z0NYHA4/3ZpiZ5yecKW3b31ZpZXVtfaO8Wdna3tndq+4fdFScSkLbJOax7PlYUc4EbWumOe0lkuLI57Trj69nfveJSsVi8aAnCXUjPBQsZARrIz2q4J572a3nTL1qza7bOdAycQpSgwItr/o1CGKSRlRowrFSfcdOtJthqRnhdFoZpIommIzxkPYNFTiiys3yi6foxCgBCmNpSmiUq78nMhwpNYl80xlhPVKL3kz8z+unOrx0MyaSVFNB5ovClCMdo9n7KGCSEs0nhmAimbkVkRGWmGgTUsWE4Cy+vEw6Z3XnvN64a9SaV0UcZTiCYzgFBy6gCTfQgjYQEPAMr/BmKevFerc+5q0lq5g5hD+wPn8AT7mQsQ==</latexit>

sdSlM1

<latexit sha1_base64="j78ipI8YN94EfUlMjfl27O0CQYo=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrulqMeiFy9CBfsh7bpk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2dldW19Y7OwVdze2d3bLx0ctnScKkKbJOax6oRYU84kbRpmOO0kimIRctoOR9dTv/1ElWaxvDfjhPoCDySLGMHGSg/40Quy26A6CUplt+LOgJaJl5My5GgEpa9ePyapoNIQjrXuem5i/Awrwwink2Iv1TTBZIQHtGupxIJqP5sdPEGnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5ua6NLPmExSQyWZL4pSjkyMpt+jPlOUGD62BBPF7K2IDLHCxNiMijYEb/HlZdKqVrzzSu2uVq5f5XEU4BhO4Aw8uIA63EADmkBAwDO8wpujnBfn3fmYt644+cwR/IHz+QMra5AC</latexit>

a1
M2

<latexit sha1_base64="PV9hsBPIv/iy6c4xhzobzekjQNg=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXrwIFeyHtOuSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aOk4VYQ2Scxj1QmxppxJ2jTMcNpJFMUi5LQdjq6nfvuJKs1ieW/GCfUFHkgWMYKNlR7woxdkt4E3CcoVt+rOgJaJl5MK5GgE5a9ePyapoNIQjrXuem5i/Awrwwink1Iv1TTBZIQHtGupxIJqP5sdPEEnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5ua6NLPmExSQyWZL4pSjkyMpt+jPlOUGD62BBPF7K2IDLHCxNiMSjYEb/HlZdI6q3rn1dpdrVK/yuMowhEcwyl4cAF1uIEGNIGAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QMp5pAB</latexit>

a1
M1

<latexit sha1_base64="If6r0YVYp+VN75gJ5F5Rt1NZBqI=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9nVoh6LXrwIFeyHtOuSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oNUHA4/3ZpiZFyacaeO6X05haXllda24XtrY3NreKe/utXScKkKbJOax6oRYU84kbRpmOO0kimIRctoOR1dTv/1IlWaxvDPjhPoCDySLGMHGSvf4wQuym+B0EpQrbtWdAf0lXk4qkKMRlD97/ZikgkpDONa667mJ8TOsDCOcTkq9VNMEkxEe0K6lEguq/Wx28AQdWaWPoljZkgbN1J8TGRZaj0VoOwU2Q73oTcX/vG5qogs/YzJJDZVkvihKOTIxmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtkQvMWX/5LWSdU7q9Zua5X6ZR5HEQ7gEI7Bg3OowzU0oAkEBDzBC7w6ynl23pz3eWvByWf24Recj28s8JAD</latexit>

a1
M3

<latexit sha1_base64="QjbD0O40hRygg28kEOoLSnRdyRk=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrulqMeiFy9CBfsh7bpk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2dldW19Y7OwVdze2d3bLx0ctnScKkKbJOax6oRYU84kbRpmOO0kimIRctoOR9dTv/1ElWaxvDfjhPoCDySLGMHGSg/4sRpkt4E3CUplt+LOgJaJl5My5GgEpa9ePyapoNIQjrXuem5i/Awrwwink2Iv1TTBZIQHtGupxIJqP5sdPEGnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5ua6NLPmExSQyWZL4pSjkyMpt+jPlOUGD62BBPF7K2IDLHCxNiMijYEb/HlZdKqVrzzSu2uVq5f5XEU4BhO4Aw8uIA63EADmkBAwDO8wpujnBfn3fmYt644+cwR/IHz+QMrcJAC</latexit>

a2
M1

<latexit sha1_base64="XjwAn/YescdMH+tONQs3wx0u9EM=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGWIhRYWEcwHJGfY2+wla/Z2j909IRz5DzYWitj6f+z8N26SKzTxwcDjvRlm5gUxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHQ19VtPVGkmxb0Zx9SP8ECwkBFsrNS8fUiva5NeseSW3RnQMvEyUoIM9V7xq9uXJImoMIRjrTueGxs/xcowwumk0E00jTEZ4QHtWCpwRLWfzq6doBOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhpZ8yESeGCjJfFCYcGYmmr6M+U5QYPrYEE8XsrYgMscLE2IAKNgRv8eVl0jwre+flyl2lVK1lceThCI7hFDy4gCrcQB0aQOARnuEV3hzpvDjvzse8NedkM4fwB87nDzpsjuo=</latexit>

LGB

<latexit sha1_base64="JPcn8qfVck8n5VT8tY0/yPrESBk=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrulqMeiFy9CBfsh7bpk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2dldW19Y7OwVdze2d3bLx0ctnScKkKbJOax6oRYU84kbRpmOO0kimIRctoOR9dTv/1ElWaxvDfjhPoCDySLGMHGSg9RkN0G3uSxGpTKbsWdAS0TLydlyNEISl+9fkxSQaUhHGvd9dzE+BlWhhFOJ8VeqmmCyQgPaNdSiQXVfjY7eIJOrdJHUaxsSYNm6u+JDAutxyK0nQKboV70puJ/Xjc10aWfMZmkhkoyXxSlHJkYTb9HfaYoMXxsCSaK2VsRGWKFibEZFW0I3uLLy6RVrXjnldpdrVy/yuMowDGcwBl4cAF1uIEGNIGAgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wc0NJAH</latexit>

f2
M1

<latexit sha1_base64="zJhVuQEqEkTZUOGettvgOai10qM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWw2k3bpZhN3N0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnsgHM07Rj+lA8ogzaqzUSaw3RBr2yxW36s5BVomXkwrkaPTLX70wYVmM0jBBte56bmr8CVWGM4HTUi/TmFI2ogPsWippjNqfzO+dkjOrhCRKlC1pyFz9PTGhsdbjOLCdMTVDvezNxP+8bmaia3/CZZoZlGyxKMoEMQmZPU9CrpAZMbaEMsXtrYQNqaLM2IhKNgRv+eVV0rqoepfV2n2tUr/J4yjCCZzCOXhwBXW4gwY0gYGAZ3iFN+fReXHenY9Fa8HJZ47hD5zPH0QwkCE=</latexit>

overhead

<latexit sha1_base64="NfBvsUBfhG3EyTpeCKDfz1ZOM9Y=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabSbt2sxt2N0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemHKmjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJTFJtUcqk6IdHImcCmYYZjJ1VIkpBjOxzdzvz2EyrNpHgw4xSDhAwEixklxkotqjBipl+ueFVvDneV+DmpQI5Gv/zViyTNEhSGcqJ11/dSE0yIMoxynJZ6mcaU0BEZYNdSQRLUwWR+7dQ9s0rkxlLZEsadq78nJiTRepyEtjMhZqiXvZn4n9fNTHwdTJhIM4OCLhbFGXeNdGevuxFTSA0fW0KoYvZWlw6JItTYgEo2BH/55VXSuqj6l9Xafa1Sv8njKMIJnMI5+HAFdbiDBjSBwiM8wyu8OdJ5cd6dj0VrwclnjuEPnM8ftI6POg==</latexit>

credit

Preemption with HOLD\RELEASE
Credit non-frozen during GB

<latexit sha1_base64="DxNc8f34fXMSE4oVBdY/C8kcN50=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR6LXrwIFe0HtiFsNpt26WYTdjdCCf0XXjwo4tV/481/47bNQVsfDDzem2Fmnp9wprRtf1uFtfWNza3idmlnd2//oHx41FFxKgltk5jHsudjRTkTtK2Z5rSXSIojn9OuP76e+d0nKhWLxYOeJNSN8FCwkBGsjfSognvuZbdebeqVK3bVngOtEicnFcjR8spfgyAmaUSFJhwr1XfsRLsZlpoRTqelQapogskYD2nfUIEjqtxsfvEUnRklQGEsTQmN5urviQxHSk0i33RGWI/UsjcT//P6qQ4v3YyJJNVUkMWiMOVIx2j2PgqYpETziSGYSGZuRWSEJSbahFQyITjLL6+STq3qNKr1u3qleZXHUYQTOIVzcOACmnADLWgDAQHP8ApvlrJerHfrY9FasPKZY/gD6/MHUT6Qsg==</latexit>

sdSlM2

<latexit sha1_base64="xqvb91+VOFumNBPGYjzm10GYdao=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR6LXrwIFe0HtiFsNpt26WYTdjdCCf0XXjwo4tV/481/47bNQVsfDDzem2Fmnp9wprRtf1uFtfWNza3idmlnd2//oHx41FFxKgltk5jHsudjRTkTtK2Z5rSXSIojn9OuP76e+d0nKhWLxYOeJNSN8FCwkBGsjfTIgnvuZbdebeqVK3bVngOtEicnFcjR8spfgyAmaUSFJhwr1XfsRLsZlpoRTqelQapogskYD2nfUIEjqtxsfvEUnRklQGEsTQmN5urviQxHSk0i33RGWI/UsjcT//P6qQ4v3YyJJNVUkMWiMOVIx2j2PgqYpETziSGYSGZuRWSEJSbahFQyITjLL6+STq3qNKr1u3qleZXHUYQTOIVzcOACmnADLWgDAQHP8ApvlrJerHfrY9FasPKZY/gD6/MHQbyQqA==</latexit>

idSlM2

<latexit sha1_base64="b0Y3o9epAmBYnNdLKQ03WBDWaKQ=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiFy9CRfuBbQibzaZdutmE3Y1QQv+FFw+KePXfePPfuE1z0NYHA4/3ZpiZ5yecKW3b31ZpZXVtfaO8Wdna3tndq+4fdFScSkLbJOax7PlYUc4EbWumOe0lkuLI57Trj69nfveJSsVi8aAnCXUjPBQsZARrIz2y4J572a3nTL1qza7bOdAycQpSgwItr/o1CGKSRlRowrFSfcdOtJthqRnhdFoZpIommIzxkPYNFTiiys3yi6foxCgBCmNpSmiUq78nMhwpNYl80xlhPVKL3kz8z+unOrx0MyaSVFNB5ovClCMdo9n7KGCSEs0nhmAimbkVkRGWmGgTUsWE4Cy+vEw6Z3XnvN64a9SaV0UcZTiCYzgFBy6gCTfQgjYQEPAMr/BmKevFerc+5q0lq5g5hD+wPn8AQDeQpw==</latexit>

idSlM1

<latexit sha1_base64="KY+vo7/StuAgTD4cHgz7MnCQH9w=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0VI9FL16EivYD2xA2m027dLMJuxuhhP4LLx4U8eq/8ea/cdvmoK0PBh7vzTAzz084U9q2v63Cyura+kZxs7S1vbO7V94/aKs4lYS2SMxj2fWxopwJ2tJMc9pNJMWRz2nHH11P/c4TlYrF4kGPE+pGeCBYyAjWRnpUwT33slvvfOKVK3bVngEtEycnFcjR9Mpf/SAmaUSFJhwr1XPsRLsZlpoRTielfqpogskID2jPUIEjqtxsdvEEnRglQGEsTQmNZurviQxHSo0j33RGWA/VojcV//N6qQ4v3YyJJNVUkPmiMOVIx2j6PgqYpETzsSGYSGZuRWSIJSbahFQyITiLLy+T9lnVqVdrd7VK4yqPowhHcAyn4MAFNOAGmtACAgKe4RXeLGW9WO/Wx7y1YOUzh/AH1ucPUsOQsw==</latexit>

sdSlM3

<latexit sha1_base64="hwf/kuZYCpiUv9lhOzAm+x2GRN4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0VI9FL16EivYD2xA2m027dLMJuxuhhP4LLx4U8eq/8ea/cdvmoK0PBh7vzTAzz084U9q2v63Cyura+kZxs7S1vbO7V94/aKs4lYS2SMxj2fWxopwJ2tJMc9pNJMWRz2nHH11P/c4TlYrF4kGPE+pGeCBYyAjWRnpkwT33slvvfOKVK3bVngEtEycnFcjR9Mpf/SAmaUSFJhwr1XPsRLsZlpoRTielfqpogskID2jPUIEjqtxsdvEEnRglQGEsTQmNZurviQxHSo0j33RGWA/VojcV//N6qQ4v3YyJJNVUkPmiMOVIx2j6PgqYpETzsSGYSGZuRWSIJSbahFQyITiLLy+T9lnVqVdrd7VK4yqPowhHcAyn4MAFNOAGmtACAgKe4RXeLGW9WO/Wx7y1YOUzh/AH1ucPQ0GQqQ==</latexit>

idSlM3

Figure 3: AVB Frame Transmission in Preemption with
HOLD/RELEASE (inspired by [38]).

4.1 Service Curve for AVB Traffic
In [40], a Network Calculus (NC)-based analysis for two AVB

classes in the TSN/TAS+CBS architecture has been proposed. How-

ever, it only supports the non-preemptive and preemptive without

HOLD/RELEASE modes and assumes a frozen credit behavior dur-

ing the guard band of the non-preemptive mode. A timing analysis

for multiple AVB classes that considers both frozen and non-frozen

credit behavior for the guard band interval of the non-preemptive

mode has been presented in [39]. Neither of the papers discussed

the performance analysis in the preemptive with HOLD/RELEASE

mode. Although the preemptive mode with HOLD/RELEASE has

been discussed in [7], the authors consider the overhead and ST

window together, which introduces pessimism since the credit of

the AVB traffic class will be reduced/increased rather than frozen

during the preemption overhead segment. In this section, we give

the service curve to multiple AVB classes M𝑖 (𝑖 ∈ [1, 𝑛h
CBS
]), ex-

tended from [39] for the preemptive mode with HOLD/RELEASE.

Theorem 1. The (min-plus) minimum service curve for an AVB
Class M𝑖 (𝑖 ∈ [1, 𝑛hCBS]) in egress port h under preemption with
HOLD/RELEASE is

𝛽
h, [PrH/R]
M𝑖

(𝑡) = idSlM𝑖

𝑡 −
𝛼hST (𝑡)
𝐶
−
𝛼
h,M𝑖

OH (𝑡) + 𝑐
max

M𝑖

idSlM𝑖


+

↑

. (1)

AVB-aware Routing and Scheduling for Critical Traffic in Time-sensitive Networks with Preemption RTNS ’22, June 7–8, 2022, Paris, France

where 𝛼hST (𝑡)(c.f. [7, 39, 40]) is the arrival curve of ST traffic scheduled

according to the pre-defined GCLs given by Lemma 1, 𝛼h,M𝑖

OH (𝑡) is the
arrival curve with respect to the extra overheads due to the preemption
mode given by Lemma 2, and 𝑐max

M𝑖
given by Lemma 3 is the maximum

credit bound of Class M𝑖 with non-frozen credit during GB, which is
compliant with the standard hypothesis (c.f. Figure 3). The proof can
be found in Section 2 of the supplementary material archived in [34].

For ST traffic scheduled according to the GCL, we follow Lemma

1 of [39], defining the starting time 𝑜h
𝑖
and the duration 𝐿h

ST,𝑖
for

each ST window, and the relative offset 𝑜h
𝑗,𝑖

= 𝑜h
𝑗
− 𝑜h

𝑖
between

the 𝑖𝑡ℎ and 𝑗𝑡ℎ ST window instances. The number of ST windows

within the GCL period is bounded by 𝑁 h

ST
due to the schedule cycle

𝑝h
GCL

for port ℎ.

Lemma 1 ([39]). The arrival curve of ST traffic in an egress port ℎ
is given by, for all 𝑡 ∈ R+

𝛼hST (𝑡) = max

0≤𝑖≤𝑁ℎ
ST−1

{
𝛼hST,𝑖 (𝑡)

}
𝛼hST,𝑖 (𝑡) =

𝑖+𝑁 h
ST−1∑
𝑗=𝑖

𝐿hST, 𝑗𝐶 ·
⌈
𝑡 − 𝑜ℎ

𝑗,𝑖

𝑝hGCL

⌉
,

(2)

where 𝛼hST,𝑖 (𝑡) is one possible arrival curve, computed by taking the

𝑖𝑡ℎ ST window, 𝑖 ∈
[
0, 𝑁 h

ST,𝑖 − 1
]
, as the reference; 𝐿hST, 𝑗 · 𝐶 is the

maximum amount of bits that can be sent during a ST traffic window
of length 𝐿hST, 𝑗 . As stated in [39], each staircase function 𝛼hST,𝑖 (𝑡)
represents the upper bound of ST transmission in the periodic ST
windows of length 𝐿hST, 𝑗 , with 𝑜

h
𝑗,𝑖

being the offsets of the respective ST
windows within the GCL period. As mentioned in [39], the proof can
be readily derived from the proof for TT streams in TTEthernet [36].

Since ST traffic is configured as express and other traffic types,

i.e., AVB and BE traffic, are configured to be preemptable, the extra

overhead of preempted frames can only occur after each ST win-

dow [40]. For the preemption without HOLD/RELEASE mode, a

preemptable frame can start at any idle time before an ST window

and will continue to transmit at most 𝑙max

nPr
+𝑙+

𝐼𝐹𝐺
bytes after the gate

open of ST traffic. Therefore, in the worst case, there will be an over-

head after each ST window, as long as two consecutive ST windows

are not back to back, as discussed in [40]. However, for the preemp-

tion with HOLD/RELEASE mode, there is a guard band with the

maximum size of 𝐿GB = (𝑙max

nPr
+𝑙+

𝐼𝐹𝐺
)/𝐶 preserved to prevent the jit-

ter of ST traffic and to prevent any leftover frame segments smaller

than 𝑙min

Pr
bytes. Therefore, if the maximum frame length of M𝑖 in

the current node port is 𝑙
h,max

M𝑖
≤ 𝑙max

nPr
, or if the idle interval time be-

tween any two adjacent ST windows is 𝑜h
𝑗,𝑖
−𝑜h

𝑗−1,𝑖 −𝐿
h

ST, 𝑗−1 ≤ 𝐿GB,
there will be no preemption overhead after the 𝑗𝑡ℎ ST window.

Thus, for the preemption with HOLD/RELEASE mode, we have

𝑙
h,M𝑖

OH, 𝑗
= 𝑙OH · 1{𝑙h,max

M𝑖
>𝑙max

nPr
} · 1{𝑜h𝑗,𝑖−𝑜h𝑗−1,𝑖−𝐿hST, 𝑗−1>𝐿GB } . (3)

Lemma 2. For the preemption mode with HOLD/RELEASE in an
egress portℎ, the arrival curve of the interval where the credit is frozen

Algorithm 1 The maximum times a frame of Class M𝑖 in the node

port h can be preempted

Input: GCL, 𝑙
h,max

M𝑖

Output: 𝑛h,M𝑖
Pr

1: Initialize: 𝑙
h,max

M𝑖 ,payload
← 𝑙

h,max

M𝑖
− 𝑙+

𝐹𝐶𝑆
, 𝑛

h,M𝑖
Pr

← 0, 𝑛
M𝑖 ,max

Pr
←⌊

𝑙
h,max

M𝑖 ,payload
−𝑙F,min

payload

𝑙
NF,min

payload

⌋
2: Logic Part:
3: if 𝑛M𝑖 ,max

Pr
= 0 then

4: 𝑛
h,M𝑖
Pr
← 0

5: else if 𝑛M𝑖 ,max

Pr
= 1 then

6: 𝑛
h,M𝑖
Pr
← 1

7: else
8: 𝑛

h,M𝑖
Pr
← 1, 𝑛

h,M𝑖
Pr,tmp

← 1

9: 𝑙
h,max

M𝑖 ,payload
← 𝑙

h,max

M𝑖 ,payload
− 𝑙NF,min

payload

10: for benchmark 𝑖 ← 0 to 𝑁 h

ST,𝑖
− 1 do

11: 𝑗 ← 𝑖

12: while 𝑙
h,max

M𝑖 ,payload
+ 𝑙𝐹𝐶𝑆 ≥ 𝑙min

Pr
do

13: if (𝑜h𝑗+1, 𝑗 − 𝐿hST, 𝑗 − 𝑙OH/𝐶) ·𝐶 ≥ 𝑙
h,max

M𝑖 ,payload
+ 𝑙𝐹𝐶𝑆 + 𝑙+𝐼𝐹𝐺 then

14: break;

15: else
16: if 𝑜h𝑗+1, 𝑗 − 𝐿hST, 𝑗 − 𝑙OH/𝐶 ≤ 𝐿GB then
17: 𝑗 ← 𝑗 + 1
18: else
19: if (𝑜h𝑗+1, 𝑗 − 𝐿hST, 𝑗 − 𝑙OH/𝐶 − 𝐿GB) ·𝐶 ≤ 𝑙

NF,min

payload
+ 𝑙𝐹𝐶𝑆 + 𝑙+𝐼𝐹𝐺

then
20: 𝑙

h,max

M𝑖 ,payload
← 𝑙

h,max

M𝑖 ,payload
− 𝑙NF,min

payload

21: else
22: 𝑙

h,max

M𝑖 ,leftover
← 𝑙

h,max

M𝑖 ,leftover
− (𝑜h𝑗+1, 𝑗 − 𝐿hST, 𝑗 − 𝑙OH/𝐶 − 𝐿GB −

𝑙𝐹𝐶𝑆/𝐶 − 𝑙+𝐼𝐹𝐺 /𝐶) ·𝐶
23: end if
24: 𝑛

h,M𝑖
Pr,tmp

← 𝑛
h,M𝑖
Pr,tmp

+ 1
25: 𝑗 ← 𝑗 + 1
26: end if
27: end if
28: end while
29: 𝑛

h,M𝑖
Pr
← max

{
𝑛
h,M𝑖
Pr,tmp

, 𝑛
h,M𝑖
Pr

}
30: end for
31: end if

due to ST windows, for all 𝑡 ∈ R+, is given by

𝛼
h,M𝑖

OH (𝑡) = max

0≤𝑖≤𝑁 h
ST−1

{
𝛼
h,M𝑖

OH,𝑖 (𝑡)
}

𝛼
h,M𝑖

OH,𝑖 (𝑡) =
𝑖+𝑁 h

ST−1∑
𝑗=𝑖

𝑙
h,M𝑖

OH, 𝑗 ·

𝑡 − 𝑜h

𝑗,𝑖
− 𝐿hST, 𝑗/𝐶

𝑝hGCL

 ,
(4)

where 𝛼h,M𝑖

OH,𝑖 (𝑡) is, again, a possible arrival curve derived from a

reference 𝑖𝑡ℎ ST window, 𝑖 ∈
[
0, 𝑁ℎ

ST,𝑖

]
, and 𝑙h,M𝑖

OH, 𝑗 represents the over-

head after the 𝑗𝑡ℎ ST window, calculated from Eq. (3). The differ-
ence between the overhead arrival curve for the preemption with
HOLD/RELEASE mode discussed in this paper and for the preemption
with no HOLD/RELEASE mode proposed in [40] is the way that the
overhead length is calculated.

Similar to above, besides 𝐿GB, the actual maximum guard band

before each ST window 𝑗 is also related to the maximum frame

𝑙
h,max

≤𝑖 of AVB traffic with priority higher than or equal to M𝑖 in

RTNS ’22, June 7–8, 2022, Paris, France Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, and Mikael Sjödin

the current node port, and the idle gap between two adjacent ST

windows 𝑜h
𝑗,𝑖
− 𝑜h

𝑗−1,𝑖 − 𝐿
h

ST, 𝑗−1.

𝐿
h,M𝑖

GB, 𝑗
= min

{
𝐿GB, 𝐿GB −

𝑙
h,min

≤𝑖 · 1{𝑙h,max

≤𝑖 ≤𝑙max

nPr
}

𝐶
,

𝑜h𝑗,𝑖 − 𝑜
h

𝑗−1,𝑖 − 𝐿
h

ST, 𝑗−1

}
.

(5)

Lemma 3. For the preemption with HOLD/RELEASE mode, the im-
pact of overhead is also reflected in the lower bound of credit compared
with the non-preemption mode,

𝑐min

M𝑖
= sdSlM𝑖

·
𝑙
h,max

M𝑖

𝐶
+ 𝑛h,M𝑖

Pr
·
(
sdSlM𝑖

· 𝑙OH
𝐶

+idSlM𝑖
·
𝑙max

nPr
𝐶

)
· 1{idSlM𝑖

·𝑙max

nPr <−sdSlM𝑖
·𝑙OH },

(6)

where idSlM𝑖
and sdSlM𝑖

are the idle and send slopes of the AVB class
M𝑖 , respectively (c.f. Figure 2, and 𝑛h,M𝑖

Pr
is the maximum number

of preemptions for a single frame of Class M𝑖 . We derive a function
(described in Algorithm 1) to compute the value of 𝑛h,M𝑖

Pr
.

The upper bound on the credit with non-frozen state during guard
band is computed using the expression for the non-preemption mode
proposed in [39],

𝑐max

M𝑖
= idSlM𝑖

·

∑𝑖−1
𝑗=1 𝑐

min

M𝑗
− 𝑙h,max

>𝑖
− 𝜎h,M𝑖

GB∑𝑖−1
𝑗=1 idSlM𝑗

+ 𝜌h,M𝑖

GB −𝐶
. (7)

by replacing 𝑐min

M𝑗
with Eq. (6), and the guard band duration with

𝐿
h,M𝑖

GB, 𝑗 in Eq. (5) for constructing linear arrival curve of guard band

duration with the burst 𝜎h,M𝑖

GB and the rate 𝜌h,M𝑖

GB [39]. The proof can
be found in Section 3 of the supplementary material archived in [34].

In Algorithm 1, the frame payload 𝑙
h,max

M𝑖 ,payload
does not consider

the overhead of MAC DA, MAC SA, FCS, etc.. According to the

preemptable MAC frame format [12], the minimum payload of the

first fragment of a preemptable frame is 𝑙
F,min

payload
= 42 bytes, and all

of the leftover fragments have a minimum payload of 𝑙
NF,min

payload
= 60

bytes. Hence, the actual maximum preemption times 𝑛
h,M𝑖

Pr
of the

single frame of Class M𝑖 is initialized to 0, of which the final re-

sult will be calculated by the algorithm, and 𝑛
M𝑖 ,max

Pr
initialized to

⌊𝑙h,max

M𝑖 ,payload
− 𝑙F,min

payload
/𝑙NF,min

payload
⌋ represents the maximum possible

preemption times of the maximum-length frame of Class M𝑖 with-

out considering the relative position of ST windows. Lines 7 to 27

handle the case in which the length of the current frame or the

remaining frames is sufficient to continue preemption. However,

since AVB traffic can only be preempted by ST traffic, whether it can

continue to be preempted depends on the idle interval between the

respective ST windows. Line 10 indicates that different ST windows

in the hyperperiod are respectively used as benchmarks. The ST

window benchmark here represents the first window that has a

preemptive effect on the AVB frame. Then we obtain the maximum

number of preemptions times for a frame of AVB Class𝑀𝑖 under the

different ST window benchmarks. Line 12 ensures that the leftover

fragment is large enough to be preempted. Line 13 ensures that the

current idle time slot is large enough to finish the transmission for

the remaining AVB fragment. Thus, the AVB fragment will not be

preempted again, and line 14 directly jumps to the end of the while

loop. Otherwise, if the current idle time slot is not larger than 𝐿GB
(line 16), the AVB fragment will not start to transmit during such

a slot. If not, there will be at least 𝑙
NF,min

payload
bytes in transmission

during such a time slot (lines 19 to 22).

Theorem 2. The standard [14] and novel [1] preemption modes
with HOLD/RELEASE have the samemin-plus minimum service curve
(Eq. (1)) for AVB Class M𝑖 (𝑖 ∈ [1, 𝑛hCBS]).

Proof : According to Theorem 1, the cumulative service bits for

AVBClass𝑀𝑖 during its busy period are represented by the variation

of its credit, by the time duration except for ST windows, and the

overhead durations (see Eq. (8) below). For the preemption mode

with HOLD/RELEASE, the relation of service times for AVB Class

M𝑖 , ST traffic windows occupancy, guard bands and preemption

overheads in any interval Δ𝑡 is

Δ𝑡M𝑖
=
[
(𝑡 − 𝑠 − Δ𝑡ST)idSlM𝑖

−𝐶 · Δ𝑡M𝑖

OH
− 𝑐M𝑖

(𝑡) + 𝑐M𝑖
(𝑠)

]
/𝐶.

(8)

Thus, the credit behavior after each ST window may only affect

the credit bounds but does not affect the expression of the service

curve for AVB Class 𝑀𝑖 in Eq. (1). In the following, we will show

that credit bounds will not be affected by the credit behavior after

ST windows.

According to Lemma 3, the lower bound of credit for Class M𝑖

is only related to the maximum frame size 𝑙
h,max

M𝑖
in Class M𝑖 and

the maximum number of preemptions 𝑛
h,M𝑖

Pr
of a frame of Class

M𝑖 . The maximum number of preemptions is only related to the

frame size and the idle interval duration between two consecutive

ST windows but does not depend on how the credit is behaving

after the ST window.

Taking the interval (𝑠, 𝑡] defined for the credit upper bound for

Class M𝑖 in Lemma 3, and the characteristics of the lower priority

traffic that cannot be preempted by other higher priority AVB traffic

but can be preempted by ST traffic, there is at most one frame of

lower priority traffic in𝑄>𝑖
AVB

or𝑄BE interferingwith higher priority

AVB traffic. Moreover, the difference between the standard and the

novel preemption with HOLD/RELEASE is only related to the credit

behavior if the low priority frame is preempted by ST traffic.

Since Eq. (14) from the proof of Lemma 3 which can be found in

the supplementary material [34] can be rewritten as,

𝑐M𝑖
(𝑡) − 𝑐M𝑖

(𝑠) ≤ 𝑐<𝑖 (𝑡) − 𝑐<𝑖 (𝑠) − (Δ𝑡LP + Δ𝑡GB)∑𝑖−1
𝑗=1 idSlM𝑗

−𝐶
· idSlM𝑖

, (9)

only the term Δ𝑡LP may be influenced by different credit behav-

ior after a ST window. In the standard preemption mode [14], a

lower priority frame in 𝑄>𝑖
AVB

or 𝑄BE preempted by the ST traf-

fic will immediately resume its transmission after the ST window.

Thus, the maximum interference from the lower priority traffic is

equal to 𝑙max

>𝑖
. In the novel preemption mode [1], the lower prior-

ity frame preempted by the ST traffic will not be resumed after

the ST window if there is a higher priority frame eligible for be-

ing forwarded. Therefore, the interference from the lower priority

AVB-aware Routing and Scheduling for Critical Traffic in Time-sensitive Networks with Preemption RTNS ’22, June 7–8, 2022, Paris, France

traffic may be smaller. However, the starting time 𝑠 may be far

away from the ST window so that the lower priority frame will

not be preempted. In this case, the maximum interference from

the lower priority traffic is still 𝑙max

>𝑖
. Therefore, no matter which

preemption mode with HOLD/RELEASE we select, there is always

Δ𝑡LP ·𝐶 ≤ max
𝑗 ∈[𝑖+1,𝑛ℎ

CBS
] {𝑙

max

M𝑗
, 𝑙max

BE
} = 𝑙max

>𝑖
.

Thus, the standard [14] and novel [1] preemption modes with

HOLD/RELEASE have the same min-plus minimum service curve

for each AVB class. ■

5 AVB-AWARE HEURISTIC SCHEDULING
ALGORITHM

Using our novel NC analysis for TSN networks with preemption, we

now address the problem of generating GCL schedules that ensure

the schedulability of both ST and maximize the schedulability of

AVB streams. This section presents a heuristic algorithm with a

polynomial-time complexity for finding GCLs such that the ST

streamsmeet their deadlineswhile also aiming for the schedulability

of AVB traffic. The routing for AVB traffic is predefined and fixed

since the rerouting of both traffic simultaneously would severely

increase the complexity of the algorithm. The heuristic algorithm is

called AVB-aware Heuristic Scheduling Algorithm (ARIEL), which

is based on the heuristic algorithm proposed by Raagaard et al. [27]

and Gavriluţ et al. [10]. ARIEL is presented in Algorithm 2.

In the proposed algorithm, we first sort all ST streams using

sortFlows(𝑓 𝑙𝑜𝑤𝑠𝑆𝑇) in line 2, based on their periods (or deadlines)

in ascending order, since generally, streams with shorter periods

(or deadlines) are harder to schedule. We, therefore, aim to incre-

mentally schedule the most “difficult” ST streams first. For arbitrary

deadlines, the ordering can be done in deadline-monotonic fash-

ion. After ordering all of the ST streams, we consider each stream

individually in a large loop, starting from line 3 in the algorithm.

The main objective of the heuristic is to maximize the num-

ber of schedulable AVB streams, and the secondary objective is to

minimize the required number of queues for the ST streams while

meeting all the timing requirements of the ST streams. Therefore,

the algorithm considers all possible stream traffic routes to find a

route that provides a higher chance of schedulability for both ST

and AVB streams. Therefore, we sort the possible routes of the ST

stream on line 4 of the algorithm using flow.sortRoutes(), which is

explained in detail in Section 5.2. Then, the stream is set to use only

one queue on all links (line 6). After setting the route for the stream

that we are scheduling, the algorithm finds a schedule for the stream

for all links on its dedicated route in line 15. The scheduleFlow(flow,

schedule) function is described in details in Section 5.1. After find-

ing a schedule for the current stream, the algorithm checks whether

the AVB streams are schedulable in line 16 using the AVB analysis

described in Section 4. If the number of schedulable AVB streams

is the highest encountered with the current route (line 17 and on-

ward), the route is set as the best route for the current stream, and

the algorithm continues to schedule the next stream. However, if

scheduleFlow(flow, schedule) returns false, i.e., there is no schedule

found for the current stream, the algorithm checks the problem-

atic link using the constrainingQueue(flow, schedule) function in

line 24. This function returns the link on which the offset for the

frames was disregarded due to the queue congestion. Therefore,

Algorithm 2 ARIEL algorithm

Input: 𝑓 𝑙𝑜𝑤𝑠𝑆𝑇
Output: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
1: schedule = []

2: 𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑙𝑜𝑤𝑠𝑆𝑇 = sortFlows(𝑓 𝑙𝑜𝑤𝑠𝑆𝑇)

3: for flow in 𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑙𝑜𝑤𝑠𝑆𝑇 do
4: flow.sortRoutes()

5: success = FALSE

6: flow.setNumQueuesAllLinks(1)

7: while !flowRoutes.isEmpty() do
8: maxSchedulableAVBs = 0

9: bestSTroute = NULL

10: flowRoutes = flow.getRoute()

11: currentRoute = flowRoutes.pop()

12: flow.setRoute(currentRoute)

13: while sucess == FALSE do
14: if scheduleFlow(flow, schedule) then
15: schedule = schedule.add(flow)

16: shedulableAVBs = checkAVB(schedule)

17: if shedulableAVBs > maxSchedulableAVBs then
18: bestSTroute = currentRoute

19: maxSchedulableAVBs = shedulableAVBs

20: end if
21: schedule = schedule.remove(flow)

22: success = TRUE

23: else
24: problemLink=constrainingQueue(flow, schedule)

25: newNumQueues=flow.getNumQueues(problemLink)+1

26: flow.setNumQueues(problemLink, newNumQueues)

27: maxNumQueues=flow.getMaxNumQueues(problemLink)

28: if newNumQueues > maxNumQueues then
29: break

30: end if
31: end if
32: end while
33: end while
34: if bestSTroute == NULL then
35: return FALSE

36: else
37: flow.setRoute(bestSTroute)

38: schedule = schedule.add(flow)

39: end if
40: end for
41: return schedule

the algorithm increases the number of queues for the ST streams

in order to increase the chance of schedulability in line 25 onward.

In some cases, it may be necessary to use more queues for sched-

uled traffic, and, typically, the number of available ST queues is

larger than 1 [6]. The algorithm will increase the number of queues

for the current stream under schedule until reaching the maximum

number of available ST queues. If the stream cannot be scheduled

with the maximum number of queues, the algorithm will use an-

other route to try from the list of sorted possible routes.

Finally, the algorithm sets the best route for the stream and adds it

to the schedule. If no best route is set, the stream is not schedulable,

and the algorithm returns false since all of ST streams have to

be scheduled for a feasible schedule (line 35 onward). Otherwise,

if all the streams are scheduled by checking different routes, the

algorithm returns the whole schedule in line 41.

The runtime complexity of the algorithm is polynomial since

ARIEL only looks at a limited number of (best) routes per each ST

flow (AVB flow routing is fixed) and, for each flow, there is no back-

tracking beyond extending the number of available ST queues up to

a maximum of 8. Moreover, the scheduleFlow() function (described

below) is a simplified version of the same function from [27] that

has been shown to be polynomial.

RTNS ’22, June 7–8, 2022, Paris, France Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, and Mikael Sjödin

5.1 scheduleFlow() function
Algorithm 3 presents the process of scheduling a stream over its

route. The algorithm is a slightly modified version of an existing

scheduling algorithm presented by Raagaard et al. [10, 27], adapted

to our problem. The algorithm schedules all frame instances of a

given ST stream (flow) from sender to receiver starting at line 3.

In the first phase, the algorithm calculates the lower and upper

bounds of the offset for the stream in line 4 and line 5, respectively.

The lower bound function returns the earliest possible offset in

the feasible region for an offset. If the current link is connected to

the sender node, the function will return the lower offset bound to

be 0; otherwise, the lower bound is the earliest time after adding

the sending offset and transmission duration on the previous link

and, additionally, the synchronization precision (c.f. [5]). The upper

bound function returns the latest point in time where the queue of

egress port is available for transmission of the frame on this link.

After finding the offset bound for the stream, the offset on the

current link is calculated using middleOffset() function in line 6. In

the ASAP strategy of Raagaard et al. [27], the frame is placed at the

beginning of the first feasible offset region. In our adaptation, the

function tries to schedule the frame in the middle of the first feasible

offset region on the link. This middle point was selected to create a

gap between the ST frames to schedule AVB frames (similar to the

porosity concept from [11, 29]). For example, if we would schedule

all ST frames one after the other at the beginning (or the end) of the

available offset region (ASAP or ALAP strategies in [27]), the AVB

frame might miss its deadline depending on when it is released. An

undefined return value from the function means no offset could

be found for the frame, and the stream is not schedulable. If the

offset is less than or equal to the upper bound, then the algorithm

sets the calculated offset as the frame offset on the current link

(line 9 and onward). Note that after finding the offset of the stream

on the current link, the upper bound offset for the subsequent

link should be updated using latestQueueTime() function. However,

with this approach of placing the frame in the middle of the region,

we eliminate the backtracing of the offset if it is bigger than the

upper bound as done in [27] since the offset will never be larger

than the upper bound. Therefore, the only condition in line 9 is to

get the offset less or equal to the upper bound.

In the end, after all of the frames have been scheduled, the func-

tion checks if the end-to-end delay is less than or equal to the period

(or deadline) of the stream (line 17). If it is, it returns that the stream

is schedulable. Otherwise, the stream is not schedulable.

5.2 ST route ordering
In this subsection, we present flow.sortRoutes() function in Al-

gorithm 2. There are multiple ways to find a route for a stream,

including the shortest route based on the number of links or the

route with less accrued link utilization. However, using only the

number of hops (e.g. [10]) as a metric to sort/select the list of possi-

ble routes may not always lead to a feasible schedule [17]. Other

works, e.g. [17, 26] use the link utilization or the load balancing [24]

as an alternative metric. However, we introduce a novel approach

to route finding in heuristic TSN approaches where we consider

several different properties that affect schedulability combined into

one sorting metric. We first find all k-possible routes for a stream

Algorithm 3 Schedule Flow

Input: flow

Input: schedule

Output: boolean

1: currentLink = flow.s

2: frame = flow.getFrame()

3: while currentLink != flow.t do
4: lowBound = calcLowOffset(flow, currentLink, frame, schedule)

5: upBound = calcUpOffset(flow, currentLink, frame, schedule)

6: offset = middleOffset(flow, frame, lowBound, upBound)

7: if offset == indefinite then
8: return false

9: else
10: flow.setOffset(currentLink, frame, offest)

11: nextLink = flow.getNextLink(currentLink)

12: upBound = latestQueueTime(nextLink, schedule, frame, offset)

13: flow.setUpOffsetBound(nextLink, frame, upBound)

14: currentLink = nextLink

15: end if
16: end while
17: return (flow.end2end <= flow.deadline (≤ flow.period))

according to the k-shortest path method, i.e., according to the num-

ber of hops on the stream’s route. Afterward, we use the following

metric to reorder the routes to increase the schedulability probabil-

ity of both ST and AVB streams and the probability of reaching a

feasible solution more quickly.

First, we consider the number of links (𝑁𝑟) on route 𝑟 as with

previous approaches. Clearly, the more links on the route, the more

message instances we will have to schedule overall, leading to a

higher overall network load. We normalize the number of links

to 𝑛𝑟 =
𝑁𝑟−𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛
, where 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the minimum and

maximum number of links from the talker to the listener nodes,

respectively. Moreover, we use similar to [17] the link utilization,

denoted by𝑢ℎ , on linkℎ of the route 𝑟 . When the link is less utilized,

there is a higher chance for a new ST frame that can be scheduled

on that link. Afterwards, we define the average utilization as 𝑢𝑟 =∑
ℎ∈𝑟 {𝑢ℎ} on the route 𝑟 . The standard deviation of the utilization

can be computed as 𝑢𝑟 =

√
1

𝑁𝑟

∑
ℎ∈𝑟 (𝑢ℎ − 𝑢)2 on the route 𝑟 . The

high value for the standard deviation shows the more imbalance

distribution of ST streams over the route; hence there is a higher

chance for the route to reach a bottleneck in the scheduling of

ST streams. We also need to consider the number of AVB streams,

denoted by 𝑁ℎ
𝐴𝑉𝐵

, that is going through link ℎ on the route 𝑟 . The

normalized metric is 𝑛ℎ
𝐴𝑉𝐵

= 𝑁ℎ
𝐴𝑉𝐵
/𝑁 𝑡𝑜𝑡𝑎𝑙

𝐴𝑉𝐵
, where 𝑁 𝑡𝑜𝑡𝑎𝑙

𝐴𝑉𝐵
is the

total number of AVB streams in the network. Given the above

metrics, we can combine them to obtain a weighted sum in order

to reorder the possible routes accordingly. The combined metric

for reordering the routes of a stream can be expressed as

𝑀 = 𝑤1 · 𝑛𝑟 +𝑤2 · 𝑢𝑟 +𝑤3 · 𝑢𝑟 +𝑤4 · 𝑛ℎ𝐴𝑉𝐵 . (10)

The combined metric is used for ordering the ST stream routes

with lower values of 𝑀 being more favorable over higher values

in terms of the probability of being able to schedule the respective

ST stream. Naturally, the weights in the metric have to be chosen

carefully for the given use-case or domain, and we note that there

is no silver bullet here. Usually, the weights are uniformly chosen

to give all metrics the same degree of influence, or they are chosen

unequally to reflect preferences for, e.g., shorter paths or more

balanced link utilization.

AVB-aware Routing and Scheduling for Critical Traffic in Time-sensitive Networks with Preemption RTNS ’22, June 7–8, 2022, Paris, France

6 EXPERIMENTAL EVALUATION
In this section, we show the performance of the proposed schedul-

ing algorithm with respect to the schedulability of AVB traffic and

the algorithm runtime with and without preemption enabled. More-

over, we show the impact on AVB schedulability with different link

utilization configurations. We chose equal weights for the route or-

dering metric described in Section 5.2. The first experiment is based

on a real-world use case, while the second one uses synthetic traffic.

ARIEL was implemented in Python running on a computer with

an Intel Core i7-10750H CPU running at 2.60 GHz and featuring 32

GB of RAM.

"TTTech - Internal"

SW11

SW12

SW41

SW14

SW13

SW7

SW42

SW6SW8

SW52

SW51

SW21

SW32

SW31

SW22

SBAND1

DU1 DU3DU2

SBAND1

MIMU1

MIMU2

MIMU3

StarTr1

StarTr2

DU1 DU2

BFCU CMRIU2

CMRIU1

FCM1 RCM1LCM1

FCM2 RCM2LCM2

CM1CA CM1CB

SM1CA

SM1CB

CM2CA CM2CB

SMRIU1

SMRIU2

SM2CA

SM2CB

Figure 4: Network topology of Orion use case (c.f [35]).

6.1 Realistic use-case experiment
For the real-world use case study, we consider the Orion Crew

Exploration Vehicle (CEV) presented in [25] and used in several

other works (c.f. [30, 35, 37]). Since the original use-case featured a

relatively low link utilization, we kept the topology and base stream

definition but extended the use-case by adding additional commu-

nication streams. The network in this use case contains 31 end

systems connected via 15 TSN switches, as shown in Figure 4. The

network initially contained 100 ST and 33 AVB streams, which we

extended to 222 ST and 149 AVB streams to increase the utilization

and better showcase the difference between the preemptive and

non-preemptive modes. The stream size is selected between 135

and 1527 bytes, and the period is within the range [7.5, 375]ms. The

use case predefines the routes of the streams and the deadlines are

considered implicit, i.e., they are equal to the periods. Please note

that our algorithm is able to also work with arbitrary deadlines, but

the sorting of the ST flows would have to be modified to reflect a

deadline-monotonic ordering.

Table 2: Schedulability of the streams under differentmodes

Mode ST streams AVB streams
Non-preemption 222/222 (100%) 128/149 (85,9%)

Preemption 222/222 (100%) 149/149 (100%)

We used ARIEL to schedule the ST streams in the use case while

considering the schedulability of the AVB streams in two modes

of enabled and disabled frame preemption. The results are shown

"TTTech - Internal"

ES ES ES

ES ES ES

ES

ES

ES

ES

ES

ES

ES ES ES

ES ES ES

ES ES ES

ES ES ES

ES

ES

ES

ES

ES

ES

ES ES ES

ES ES ES

Figure 5: Network topologies used for synthetic tests

in Table 2. We can see from the results that all of the ST and AVB

traffic are schedulable when preemption is enabled, while in the

non-preemption mode, only 128 AVB streams out of the 149 (85, 9%)

are schedulable. The runtime of ARIEL was 7090.13𝑠 without pre-

emption and 602.5𝑠 with preemption. The relatively high difference

in runtime can be explained by the runtime of the NC analysis calls,

which, for this use case, was higher in the non-preemptive mode

compared to the preemptive mode.

6.2 Synthetic use-case experiments
We implemented a traffic generation tool that generates synthetic

traffic for two networks topology types, mesh and ring, as depicted

in Figure 5. The network topologies are further subdivided into

medium-sized networks, containing 4 switches and 13 end-systems,

and large networkswith 8 switches and 48 end-systems, as proposed

in [4]. Therefore, we use four network topologies to evaluate the

proposed scheduling algorithm, i.e., medium mesh, medium ring,

large mesh, and large ring topologies. The generator randomly

selects a stream period from the set {1, 2, 5, 10}ms, according to the

use case defined in [16], and sets the deadlines to be equal to the

periods. The payload of all generated streams is 1500 bytes, and the

network speed was set to 100 Mbps.

We have generated 100 sets of traffic per network scenario and

scheduled them using ARIEL with and without preemption. Since

it is difficult to generate the exact utilization on all network links

uniformly, especially since only the routes of AVB streams are fixed

at the design time, the generator creates an equal number of ST

and AVB streams until at least one of the links reaches the desired

utilization when only considering the routed AVB streams. Hence,

after routing scheduling the ST streams, the combined ST+AVB uti-

lization on some links will be higher than the set utilization. While

we generate test cases where all ST streams are schedulable, not all

AVB streams may be schedulable depending on, e.g., the utilization

of the network. We selected the desired peak AVB utilization to be

60% for the first set of test cases since, usually for TSN networks,

around 25% of the bandwidth is reserved for best-effort traffic, leav-

ing around 75% for time-sensitive communication [15, 21]. Hence,

when generating use-cases with peak 60% AVB utilization, the com-

bined ST+AVB utilization typically exceeds the threshold value of

75%. We have also looked at test cases with 50%, 60%, 70%, and 80%

peak AVB utilization in large ring network topologies in order to

see the effect of the link utilization on AVB and ST schedulability.

RTNS ’22, June 7–8, 2022, Paris, France Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, and Mikael Sjödin

M RING P M RING NP M MESH P M MESH NP L RING P L RING NP L MESH P L MESH NP

Average 34,50 25,22 32,66 23,09 34,80 25,75 49,97 46,56

Median 32,58 24,22 30,64 23,72 34,88 24,52 48,63 46,58

StDev 12,30 12,72 10,98 10,32 13,48 12,43 11,59 11,59

Table 3: AVB schedulability [%]: average, median, and standard deviation for medium and large (M, L) mesh and ring (MESH,
RING) topologies with preemption (P) and without preemption (NP).

M RING P M RING NP M MESH P M MESH NP L RING P L RING NP L MESH P L MESH NP

Average 78,28 75,30 156,27 183,52 100,35 99,07 276,47 269,98

Median 71,72 66,51 136,61 174,23 86,29 83,97 190,57 199,62

StDev 48,72 46,10 110,60 97,05 59,25 59,02 500,47 490,66

Table 4: Runtime[sec]: average, median, and standard deviation for medium and large (M, L) mesh and ring (MESH, RING)
topologies with preemption (P) and without preemption (NP).

"TTTech - Internal"

L MESH NP

L MESH P

L RING NP

L RING P

M MESH NP

M MESH P

M RING NP

M RING P

0 20 40 80 1000 20 40 60 80 100
Schedulability [%]

M RING P

M RING NP

M MESH P

M MESH NP

L RING P

L RING NP

L MESH P

L MESH NP

+

+

+

+

+

+

+

+

Schedulability [%]
60

Figure 6: AVB schedulability results for medium and large
(M, L) mesh and ring (MESH, RING) topologies with preemp-
tion (P) and without preemption (NP).

"TTTech - Internal"

L MESH NP

L MESH P

L RING NP

L RING P

M MESH NP

M MESH P

M RING NP

M RING P

5 10 20 50 100 500200 1000 500020005 10 20 50 100 200 500 1000 2000 5000
Runtime [sec]

M RING P

M RING NP

M MESH P

M MESH NP

L RING P

L RING NP

L MESH P

L MESH NP

+

+

+

+

+

+

+

+

Runtime [sec]

Figure 7: Runtime results for medium and large (M, L) mesh
and ring (MESH, RING) topologies with preemption (P) and
without preemption (NP).

The numerical results of the evaluation can be found in Table 3

and Table 4, where we showcase the average, median, and standard

deviation of the results for AVB schedulability and runtime per

network scenario, respectively. Furthermore, Figures 6 and 7, depict

the AVB schedulability and algorithm runtime, respectively, as box

plots, also showing the individual use-case data points to better

visualize the spread and distribution of the results. The lower and

upper whisker boundaries are set to show low outliers that are

below 1, 5 × 𝐼𝑄𝑅 of the 1
𝑠𝑡

quartile and high outliers that are over

1, 5 × 𝐼𝑄𝑅 of the 3
𝑟𝑑

quartile. In Figure 6, the x-axis represents the

percentage of AVB streams that could be scheduled such that the

respective deadlines were fulfilled, while in Figure 7, the logarithmic

x-axis represents the total runtime in seconds for scheduling both

ST and AVB streams.

In all cases, ARIEL managed to schedule all ST streams, this

being the primary goal of the algorithm, while AVB streams were

not all schedulable. On average, we have around 10% higher AVB

schedulability when the preemption is enabled compared to when

it is disabled (c.f. Table 3). The only exception is for the experiment

on the large mesh network in which we observe only 3.4% improve-

ment in the schedulability. Mesh networks typically take more time

to schedule since there are a larger number of links to schedule

and, therefore, a more significant number of routes for ST traffic to

select from. Moreover, having more route options in large networks

usually also leads to an increased schedulability compared to, e.g.,

ring topologies of the same size.

In terms of the runtime for each network scenario, we can ob-

serve that there is no significant difference between the enabled

and disabled preemption modes. The average number of ST+AVB

streams was 78, 123, 85, 83, for the medium ring, medium mesh,

large ring, and large mesh test cases with 60% utilization, respec-

tively. The increased number of streams explains the increased

runtime of the medium mesh (M MESH P & NP in Figure 7) in

comparison to the other cases. As a reference, for an exact method

like [6], scheduling 100 ST streams in a relatively small network

with 7 end-systems and 5 switches takes between 1, 5 minutes to

4 hours depending on the stream periods while not being able to

consider the schedulability of potential AVB streams.

There are heuristic methods that are optimized toward scalability

(e.g. [32]) that can schedule networks with up to 2000 nodes and

10𝐾 ST streams in 1 hour, but they do not compute the worst-case

AVB bounds in order to check the AVB schedulability within the

scheduling step. Other heuristics that schedule ST and AVB streams

AVB-aware Routing and Scheduling for Critical Traffic in Time-sensitive Networks with Preemption RTNS ’22, June 7–8, 2022, Paris, France

together but without preemption take, e.g., 537𝑠 for 61 streams in a

network with 32 end-systems and 18 switches [10]. However, we

note that it is not easy to compare the runtime of heuristics in a

systematic manner; hence, we primarily emphasize that the benefit

of our work is that an increase in AVB schedulability does not come

with a significant increase in algorithm runtime when compared to

non-preemptive approaches.

"TTTech - Internal"

L RING NP 50

L RING P 50

L RING NP 60

L RING P 60

L RING NP 70

L RING P 70

L RING NP 80

L RING P 80

0 20 40 80 100

Schedulability [%]
600 20 40 60 80 100

Schedulability [%]

L RING P 80

L RING NP 80

L RING P 70

L RING NP 70

L RING P 60

L RING NP 60

L RING P 50

L RING NP 50

+

+

+

+

+

+

+

+

Figure 8: AVB schedulability results for large (L) ring (RING)
topologies with 50%, 60%, 70%, and 80% peak AVB utilization
in preemptive (P) and non-preemptive (NP) modes.

In Figure 8 we show the schedulability of AVB streams when the

peak AVB utilization in the large ring topology (L RING) is 50%, 60%,

70%, and 80% both in the preemptive and non-preemptive modes.

While the AVB schedulability decreases with increasing peak utiliza-

tion, we observe that the relative difference in AVB schedulability

when comparing the preemptive and non-preemptive modes is

similar, with the preemptive mode ensuring on average 8, 3% more

AVB schedulability than the non-preemptive mode, independently

of the peak utilization.

7 CONCLUSION
In this paper, we have studied the creation of GCL schedules con-

sidering the integration of ST and AVB traffic in TSN networks

with preemption. We have derived new worst-case response time

(WCRT) bounds based on Network-Calculus for an arbitrary num-

ber of AVB classes and different configurations for the CBS credit

behavior. Using this new WCRT result, we have presented a heuris-

tic algorithm for scheduling ST traffic while taking the schedulabil-

ity of the lower priority AVB streams into account. We evaluated

our approach using both an experiment derived from a real-world

use-case as well as using synthetic workloads in (medium and large)

mesh and ring topologies. We have shown the performance of our

approach both in terms of runtime and in terms of increasing the

AVB schedulability when preemption is enabled.

In future work, we want to investigate whether allowing pre-

emption within the ST traffic classes leads to an improvement in

schedulability. Moreover, we aim to study more advanced heuristic

methods that integrate the network calculus analysis more closely

into the ST scheduling loop and add optimization objectives in

order to optimize the latency of both ST and AVB streams.

REFERENCES
[1] Mohammad Ashjaei, Mikael Sjödin, and Saad Mubeen. 2021. A Novel Frame

Preemption Model in TSN Networks. Journal of Systems Architecture 80 (June
2021), 1–30.

[2] D. Bruckner, R. Blair, M-P. Stanica, A. Ademaj, W. Skeffington, D. Kutscher, S.

Schriegel, R. Wilmes, K. Wachswender, L. Leurs, M. Seewald, R. Hummen, E-

C. Liu, and S. Ravikumar. 2018. OPC UA TSN A new Solution for Industrial

Communication. https://www.intel.com/content/dam/www/programmable/us/

en/pdfs/literature/wp/opc-ua-tsn-solution-industrial-comm-wp.pdf.

[3] Martin Böhm and Diederich Wermser. 2021. Multi-Domain Time-Sensitive Net-

works—Control Plane Mechanisms for Dynamic Inter-Domain Stream Configu-

ration. Electronics 10, 20 (2021). https://doi.org/10.3390/electronics10202477

[4] Silviu S. Craciunas and Ramon Serna Oliver. 2016. Combined Task- and Network-

level Scheduling for Distributed Time-Triggered Systems. Journal of Real-Time
Systems 52, 2 (2016), 161–200.

[5] Silviu S. Craciunas and Ramon Serna Oliver. 2021. Out-of-sync Schedule Robust-

ness for Time-sensitive Networks. In Proc. WFCS. IEEE.
[6] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelik, and Wilfried Steiner.

2016. Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive

Networks. In Proc. RTNS. ACM.

[7] HugoDaigmorte, Marc Boyer, and Luxi Zhao. 2018. Modelling in network calculus

a TSN architecture mixing Time-Triggered, Credit Based Shaper and Best-Effort

queues. Technical report (2018).
[8] Jonathan Falk, Frank Dürr, and Kurt Rothermel. 2018. Exploring Practical Limi-

tations of Joint Routing and Scheduling for TSN with ILP. In Proc. RTCSA.
[9] Anais Finzi and Silviu S. Craciunas. 2019. Integration of SMT-based Scheduling

with RC Network Calculus Analysis in TTEthernet Networks. In Proc. ETFA.
IEEE.

[10] Voica Gavriluţ, Luxi Zhao, Michael L. Raagaard, and Paul Pop. 2018. AVB-Aware

Routing and Scheduling of Time-Triggered Traffic for TSN. IEEE Access 6 (2018),
75229–75243. https://doi.org/10.1109/ACCESS.2018.2883644

[11] Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, and

Saad Mubeen. 2021. Synthesising Schedules to Improve QoS of Best-effort Traffic

in TSN Networks. In Proc. RTNS. ACM.

[12] IEEE. 2015. P802.3br — Standard for Ethernet Amendment Specification and

Management Parameters for Interspersing Express Traffic. Amendment to IEEE
Std 802 (2015).

[13] IEEE. 2016. Time-Sensitive Networking Task Group. http://www.ieee802.org/1/

pages/tsn.html. retrieved 23.09.2021.

[14] IEEE. 2018. 802.1Q—IEEE Standard for Local and Metropolitan Area Networks—

Bridges and Bridged Networks. https://standards.ieee.org/standard/802_1Q-

2018.html.

[15] Jaewoong Ko, Ju-ho Lee, Chulsun Park, and Sung-kwon Park. 2015. Research

on optimal bandwidth allocation for the scheduled traffic in IEEE 802.1 AVB. In

Proc. ICVES. 31–35. https://doi.org/10.1109/ICVES.2015.7396889

[16] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. 2015. Real world automotive

benchmarks for free. In Proc. WATERS.
[17] Sune Mølgaard Laursen, Paul Pop, and Wilfried Steiner. 2016. Routing Optimiza-

tion of AVB Streams in TSN Networks. SIGBED Rev. 13, 4 (nov 2016), 43–48.

https://doi.org/10.1145/3015037.3015044

[18] J.Y. Le Boudec and P. Thiran. 2001. Network calculus: a theory of deterministic
queuing systems for the internet. Springer-Verlag.

[19] Lucia Lo Bello, Mohammad Ashjaei, Gaetano Patti, and Moris Behnam. 2020.

Schedulability analysis of Time-Sensitive Networks with scheduled traffic and

preemption support. Journal of Parallel and Distributed Computing, 144, (2020).
[20] Rouhollah Mahfouzi, Amir Aminifar, Soheil Samii, Ahmed Rezine, Petru Eles, and

Zebo Peng. 2018. Stability-aware integrated routing and scheduling for control

applications in Ethernet networks. In Proc. DATE.
[21] Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad Alharbi, Cuixiang Wang,

Xing Shao, Martin Reisslein, and Hesham ElBakoury. 2019. Ultra-Low Latency

(ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G

ULL Research. IEEE Communications Surveys Tutorials 21, 1 (2019), 88–145.

https://doi.org/10.1109/COMST.2018.2869350

[22] N. G. Nayak, F. Dürr, and K. Rothermel. 2018. Incremental Flow Scheduling

and Routing in Time-Sensitive Software-Defined Networks. IEEE Trans Industr
Inform 14, 5 (2018).

[23] Maryam Pahlevan and Roman Obermaisser. 2018. Genetic Algorithm for

Scheduling Time-Triggered Traffic in Time-Sensitive Networks. In Proc. ETFA.
https://doi.org/10.1109/ETFA.2018.8502515

[24] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. 2019. Heuristic

List Scheduler for Time Triggered Traffic in Time Sensitive Networks. SIGBED
Rev. 16, 1 (2019), 15–20.

[25] Michael Paulitsch, E Schmidt, B Gstöttenbauer, C Scherrer, and H Kantz. 2011.

Time-triggered communication (industrial applications). Time-Triggered Com-
munication (2011), 121–152.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/opc-ua-tsn-solution-industrial-comm-wp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/opc-ua-tsn-solution-industrial-comm-wp.pdf
https://doi.org/10.3390/electronics10202477
https://doi.org/10.1109/ACCESS.2018.2883644
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
https://standards.ieee.org/standard/802_1Q-2018.html
https://standards.ieee.org/standard/802_1Q-2018.html
https://doi.org/10.1109/ICVES.2015.7396889
https://doi.org/10.1145/3015037.3015044
https://doi.org/10.1109/COMST.2018.2869350
https://doi.org/10.1109/ETFA.2018.8502515

RTNS ’22, June 7–8, 2022, Paris, France Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, and Mikael Sjödin

[26] Paul Pop, Michael Lander Raagaard, Silviu S. Craciunas, andWilfried Steiner. 2016.

Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-

sensitive Networks (TSN). IET Cyber-Physical Systems: Theory and Applications
1, 1 (2016), 86–94.

[27] Michael Lander Raagaard and Paul Pop. 2017. Optimization algorithms for the

scheduling of IEEE 802.1 Time-Sensitive Networking (TSN). Tech. Univ. Denmark,
Lyngby, Denmark, Tech. Rep (2017).

[28] Ramon SernaOliver, Silviu S. Craciunas, andWilfried Steiner. 2018. IEEE 802.1Qbv

Gate Control List Synthesis using Array Theory Encoding. In Proc. RTAS. IEEE.
[29] Wilfried Steiner. 2011. Synthesis of Static Communication Schedules for Mixed-

Criticality Systems. In Proc. ISORCW. https://doi.org/10.1109/ISORCW.2011.12

[30] Domiţian Tămaş-Selicean, Paul Pop, and Jan Madsen. 2014. Design of mixed-

criticality applications on distributed real-time systems. Technical University of
Denmark (2014).

[31] Daniel Thiele and Rolf Ernst. 2016. Formal worst-case performance analysis of

time-sensitive ethernet with frame preemption. In Proc. ETFA.
[32] Marek Vlk, Kateřina Brejchová, Zdeněk Hanzálek, and Siyu Tang. 2022. Large-

scale periodic scheduling in time-sensitive networks. Computers & Operations
Research 137 (2022), 105512. https://doi.org/10.1016/j.cor.2021.105512

[33] Marek Vlk, Zdeněk Hanzálek, and Siyu Tang. 2021. Constraint programming

approaches to joint routing and scheduling in time-sensitive networks. Computers
& Industrial Engineering 157 (2021), 107317. https://doi.org/10.1016/j.cie.2021.

107317

[34] Luxi Zhao, Aldin Berisa, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen,

Masoud Daneshtalab, and Mikael Sjödin. 2022. AVB-aware Routing and Scheduling
for Critical Traffic in Time-sensitive Networks with Preemption - Supplementary
Material. https://doi.org/10.5281/zenodo.6190143 Available at https://zenodo.

org/record/6190143..

[35] L. Zhao, P. Pop, and S. S. Craciunas. 2018. Worst-Case Latency Analysis for IEEE

802.1Qbv Time Sensitive Networks Using Network Calculus. IEEE Access 6 (2018),
41803–41815. https://doi.org/10.1109/ACCESS.2018.2858767

[36] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. 2017. Timing

analysis of rate-constrained traffic in TTEthernet using network calculus. Real-
Time Systems, 52(2), (2017).

[37] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. 2017. Timing

analysis of rate-constrained traffic in TTEthernet using network calculus. Journal
of Real-Time Systems 53, 2 (2017), 254–287.

[38] Luxi Zhao, Paul Pop, and Sebastian Steinhorst. 2017. Quantitative Performance

Comparison of Various Traffic Shapers in Time-Sensitive Networking. CoRR
abs/2103.13424 (2017). arXiv:2103.13424 https://arxiv.org/abs/2103.13424.

[39] Luxi Zhao, Paul Pop, Zhong Zheng, Hugo Daigmorte, and Marc Boyer. 2021.

Latency Analysis of Multiple Classes of AVB Traffic in TSNWith Standard Credit

Behavior Using Network Calculus. IEEE Transactions on Industrial Electronics 68,
10 (2021), 10291–10302. https://doi.org/10.1109/TIE.2020.3021638

[40] Luxi Zhao, Paul Pop, Zhong Zheng, and Qiao Li. 2018. Timing analysis of AVB

traffic in TSN networks using network calculus. In Proc. RTAS.
[41] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng. 2021. ASIL-

Decomposition Based Routing and Scheduling in Safety-Critical Time-Sensitive

Networking. In Proc. RTAS. https://doi.org/10.1109/RTAS52030.2021.00023

[42] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng. 2021. Reliability-Aware

Scheduling and Routing for Messages in Time-Sensitive Networking. ACM Trans.
Embed. Comput. Syst. 20, 5, Article 41 (2021), 24 pages. https://doi.org/10.1145/

3458768

[43] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng. 2022. Time-Triggered

Scheduling for Time-Sensitive Networking with Preemption. In Proc. ASP-DAC.
https://doi.org/10.1109/ASP-DAC52403.2022.9712545

https://doi.org/10.1109/ISORCW.2011.12
https://doi.org/10.1016/j.cor.2021.105512
https://doi.org/10.1016/j.cie.2021.107317
https://doi.org/10.1016/j.cie.2021.107317
https://doi.org/10.5281/zenodo.6190143
https://zenodo.org/record/6190143
https://zenodo.org/record/6190143
https://doi.org/10.1109/ACCESS.2018.2858767
https://arxiv.org/abs/2103.13424
https://arxiv.org/abs/2103.13424
https://doi.org/10.1109/TIE.2020.3021638
https://doi.org/10.1109/RTAS52030.2021.00023
https://doi.org/10.1145/3458768
https://doi.org/10.1145/3458768
https://doi.org/10.1109/ASP-DAC52403.2022.9712545

	Abstract
	1 Introduction
	2 Related Work
	3 TSN network and device model
	4 Network Calculus Analysis for Preemption with HOLD/RELEASE
	4.1 Service Curve for AVB Traffic

	5 AVB-aware Heuristic Scheduling Algorithm
	5.1 scheduleFlow() function
	5.2 ST route ordering

	6 Experimental Evaluation
	6.1 Realistic use-case experiment
	6.2 Synthetic use-case experiments

	7 Conclusion
	References

