Modeling and Analyzing Runtime Properties of Complex
Embedded Systems

Technology Licentiate Thesis Proposal

Johan Andersson
Maéalardalen Real Time Research Centre
Maéalardalen University

johan.x.andersson@mdh.se

Abstract

This is a proposal for a technology licentiate thesis focusing on how to construct
and analyze models of existing complex embedded systems, with respect to two
important aspects of the system’s runtime behaviors, timing and resource usage.
Such models can be used to prototype new features and predict their impact early,
before implementation. This proposal will present the motivations of thiswork, the
research questions, related work, an outline of the thesis and atime plan.

Introduction

Industrial software systems such as robot controllers, telecom systems and process control systems have high
demands on dependability. This since a system failure might cause large costs, as such system might control
machinery in aproduction line or in other ways be of business critical nature. Systems of this kind is often large,
containing millions of lines of code, and long-lived, maintained for many years. They are often too large and
complex for asingle person to understand in detail and they evolve as aresult of new features and other
maintenance operations. We refer to such systems as complex embedded system

When maintaining complex embedded systems, e.g. when adding a new feature, the productivity tendsto be low,
due to the high complexity of the system. It is hard to predict how changes will affect the system and to verify
the behavior of the system require alarge amount of testing. Hard problems occur when the behavior at system
level is affected unintentionally by changes in tasks. For instance when a new feature increases the execution
times of atask, this might in some situation disturb the execution of other tasks, causing performance losses or
even error conditions. Such errors are hard to reproduce, as they are dependent on timing, whichinturnis
affected by many factors, such as data dependant execution times and effects caused by the hardware.

To reduce to costsand time required to develop new features, thereis aneed to be able to predict the impact of
changing the system with respect to runtime properties of the system. To manually predict thisimpact is hard as
details of the runtime behavior is often not documented.

Two important aspects of the runtime behavior are the timing of the tasks and the usage of logical resources.
Thiswork isfocusing on how to enable predictions of the impact of a change on such properties, in the context
of complex embedded systems.

Model Construction and Impact Analysis

A common method for increasing the understandability of complex systemsisto construct models. A model
increases the level of abstraction and focus on the relevant information. A related example isthe use of UML
models for describing software, rather than relying on the “ self-descriptive” code. A model describing the run-
time behavior of a system could enable impact analysis of the run-time properties of interest. A prototype of the
featureis added to the model and by analyzing the updated model it is possible to predict the impact.

However, models suitable for analysis of timing and resource usage properties seldom exist. Even if such models
were developed in the initial design of the system, the years of evolution has probably made them outdated. To
enable impact analysis thus requires areengineering effort in order to construct a model of the system, in a
suitable notation. In earlier work, we developed the modeling language ART-ML for this purpose.

An ART-ML model is analyzed using a probabilistic discrete-event simulator, generating execution traces. The
execution traceis analyzed using an analysistool developed for the purpose, the Property Evaluation Tool. The
tool israther general asit evaluated properties formulated in the query language PPL. Tasksin an ART -ML
model have an explicit notion of execution time and probabilities and can be one-shot, periodic or sporadic. They
have explicit attributes such as priority and periodicity. They have a behavior described in C and can

communi cate using message queues and synchronize using semaphores.

Before basing any decisions on amodel of the system, the model needsto be validated. Validating models of
complex systemsis however not trivial. One straight-forward approach isto compare predictions made using the
model with observations of the real system. In this approach, that can be done using the Property Evaluation
Tool. A set of propertiesis selected used as a point of view for acomparison and evaluated with respect to both
the execution trace recorded from the real system and the execution trace generated by the simulator. How to
select what properties to use, what tolerances to use, and how to interpret discrepancies are however open
questions.

Another use of the Property Evaluation Tool isto analyze an existing implementation. Thetool allows for
analyses of an existing, potentially very complexsystem to be made with little effort, assuming that recordings
of the system can be made using e.g. software probes. By analyzng the system and comparing the results with
earlier versions of the system, it is possible to get a better understanding of the system, to identify undesired
effects of recent changes to the system and to identify possibly dangerous trends. We refer to this asregression
analysis. Thisis similar to regression testing, which iscommonly used technique used to verify that existing
functionality of asystemis not broken when changing it, for instance when adding new features. However, in
this case, the focus is on non-functional properties.

Research Questions

Two research questions have been identified for the thesis, Q1 and Q2. The context of both questionsis
modeling of two important aspects of the runtime behavior of complex embedded systems, timing and the usage
of logical resource. Thefirst questionis of a“how” nature. No hypothesisis stated on this question; asolutionis
proposed in the thesis. The second question is about the feasibility of this approach. In this case a hypothesishas
been formulated (H2).

Q1: How to construct and validate a model describing the timing and the usage of logical
resources of an existing complex embedded system?

Q2: Isit feasible to predict the impact of a change using a model of a complex embedded
system, with respect to task timing and resour ce usage?

H2: A model of a complex embedded system can be used to predict the impact caused by a
change, with respect to task timing and the usage of logical resources.

Related work

Regarding the overall goal of thiswork, to increase the analyzability and understandability of complex industrial
systems, there are many works with similar goals, but very different methods, e.g. special programming
languages, code transformation and code visualization techniques. However, no work has been found with a
similar approach as the onein thiswork, i.e. the use of reengineering, modeling and probabilistic simulation in
order to enable impact analysis of run-time properties of complex software systems. There is however works that
relate toindividual components of this approach. The areas of dynamic analysis and reversed engineering are
related to the construction of modelsfor impact analysis. The areas of formal methods, real-time systems and
simulation related to how models can be analyzed.

Dynamic Analysisisthe area of analyzing data generated by a program at execution time and includes e.g.
performance analysis, error localization and runtime system monitoring. Parts of the work within the Dynamic
Analysis community also deals with reconstructing architectural descriptions of systems, based on observations.

For instance, a system called DiscoTech is presented in[2]. Based on run time observations an architectural view
of the system is constructed. If the general design pattern used in the system is known, mappings can be made
that transforms low level system eventsinto high level architectural operations and from that construct an
architectural description of the system. The system presented is designed for Java based systems. The types of
operations that are monitored are typically object creation, method invocation and instance variabl e assignments.
Automated, or mechanical, generation of models based on observations of the system isvery related to the
construction of ART-ML models. Weintend to investigate automated generation/validation of ART -ML models
in future work.

Another work related to the construction of ART-ML modelsis[3]. They present a process for reconstructing
software architectures, Symphony. The process incorporates the state of the practice, is problem-driven and uses
arich set of architectural views. It provides guidance for performing reconstruction. Symphony consists of two
stages. Thefirst stageisto create areconstruction strategy, selecting what views to reconstruct. The second stage
isthe execution of the strategy, i.e. to perform the reconstruction of the selected earlier views.

An approach for deterministic replay is presented in[4]. A common problem when debugging real-time systems
isto be ableto reproduce an error in order to find the source of thiserror, i.e. the bug. Due to behaviors such as
task-switches and interrupts, finding the bug by studying the code aloneisvery hard. In their approach, they
instrument a real-time system with software probes, collecting various data describing the state of the system.
After an error has been observed, the data can be stored and used to replay the execution using a debugger. This
isrelated to our approach of analyzing systems, since they use a similar technique for recording, i.e. software
probes, records similar things and has the same overall purpose, to make it easier to develop complex dependable
systems reliability. There are clear differences as well. Compared to this approach, much more detailsare
recorded of the execution of the system, but for a much shorter time. They use this very detailed datato exactly
reproduce an execution, in order to find bugs, while the data recorded in this approach is used to build models
for impact analysis.

Thereisalot of work within the area of formal methods. Model Checking is atechnique for verifying different
properties of models. Compared to the simulation approach in thiswork, Model Checking gives higher
confidence, since al states of the model is explored. However, the state space explosion problem limits the
complexity of the models that can be analyzed, so in many situations Model Checking is not an option. For real-
time systems, acommonly used tools are Uppaal [5,6] and Kronos[12].

At the University of Aalborg, efforts have been made to automate generate models of real-time systems for
UPPAAL [1]. It is however unclear from our sources whether there has been a complete implementation of the
method proposed. We have not seen any evaluation of such an implementation.

There isarecently introduced commercial product called Virtual Time [11], from RapitaSystems. It isa
simulation framework for real-time systems, seemingly very closeto ART-ML. We have not yet been able to
evaluate Virtual Time, but from their whitepaper it seemsthat it is targeting systems using the RTOS OSE Delta.
It also seemsto lack the probabilistic featuresof ART-ML.

A tool-suite called STRESS is presented in[7]. The STRESS environment is a collection of tools for analyzing
and simulating the behavior of hard real-time saf ety-critical applications. STRESS contains a modeling language
where the behavior of the tasks in the system can be modeled. It is also possible to define algorithms for resource
sharing and task scheduling. STRESS isin some ways similar to the ART Framework, but there are alot of
differencestoo, as STRESS is primarily intended as atool for testing scheduling and resource management
algorithms. It does not allow probabilistic modeling like the ART Framework.

Analytical methods for dealing with probabilistic temporal attributes have been proposed in the literature. In[9],

an analytical method for temporal analysis of task models with stochastic execution timesis presented. However,
sporadic tasks cannot be handled. A solution for this could not easily be found. Without fixed inter-arrival times,

i.e. in presence of sporadic tasks, aleast common divider of the tasksinter-arrival times can not be found.

Another analytical approach to probabilistic analysisis presented in[10]. Here they assume execution times and
deadlines that both vary over time in an unpredictable manner, while their arrival times are fixed. Basically, the
task model consists of a set of scenarios where every scenario is associated with a probability. For instance, a
task may arrive with a certain execution time and deadline with a specified probability. Tasks execute
probabilistically depending on several factors, e.g. the scheduling algorithm. The paper proposes solutions for
Earliest Deadline First (EDF), and Least Laxity First (LLF). Even though the computational complexity of this
solution has not yet been established, it seems, intuitively, that it is quite large.

Preliminary Results

Tool development

ART-ML - A probabilistic modeling language targeting complex embedded systems.
PPL - A query language for formulating properties that is of interest for analysis.
Property Evaluation Tool - A tool that evaluates PPL queries with respect to arecording.
Tracealyzer - A graphical execution trace browser.

A discrete event smulator for ART-ML models

An execution trace recorder for complex embedded systems, which have beenintegrated in a
robot control system from ABB Robotics

Publications

Johan Andersson, Anders Wall, Christer Norstrom, " Decreasing Maintenance Costs by Introducing Formal
Analysis of Real-Time Behavior in Industrial Settings', In Proceedings of the 1st International Symposium on
Leveraging Applications of Formal Methods (ISoL A '04) Paphos, Cyprus, October 2004.

Johan Andersson, Anders Wall, Christer Norstrom, " Validating Temporal Behavior Model s of Complex Real-
Time Systems’, In Proceedings of the Fourth Conference on Software Engineering Research and Practicein
Sweden (SERPS04) Linkdping, Sweden , September 2004.

Christer Norstrom, Anders Wall, Johan Andersson, Kristian Sandstrém, " Increasing maintainability in complex
industrial real-time systems by employing a non-intrusive method", In proceedings of the workshop on Migration
and Evolvability of Long-life Software Systems (MELLS'03) Erfurt, Germany , September 2003.

Anders Wall, Johan Andersson, Christer Norstrom," Probabilistic S mulation-based Analysis of Complex Real-
Times Systems”, In Proceedings of the 6th IEEE International Symposium on Object-oriented Real-time
distributed Computing Hakodate, Hokkaido, Japan , May 2003. |EEE Computer Society

Goran Mustapic, Johan Andersson, Christer Norstrém, " A Dependable Real -Time Platform for Industrial
Robotics", In Proceedings of ICSE 2003 WADS, Portland, OR USA , May 2003.

Anders Wall, Johan Andersson, Jonas Neander, Christer Norstrém, Martin Lembke, "Introducing Temporal
Analyzability Late in the Lifecycle of Complex Real-Time Systems", In proceedings of RTCSA 03, February
2003.

Thesis Outline

Thethesisisto bein the form of abook, a monograph, consisting of 6 chapters:

Introduction
Related work

Analyzing Runtime Properties based on Recordings
— Motivations/Confidence issues
— Impact of codeinstrumentation
— The ART Framework

Modeling for Impact Analysis
— About Impact Analysis, theidea
— Modeling Complex Embedded Systems
— Model Validation
— Accuracy and confidence issues

Regression Analysis of Runtime Properties
— General Idea, Potential Benefits
— Introducing Regression Analysisin a Development Organization
— Findings from introducing regression analysisin a company
— How to validate the cost cut? Design of acase study.

Conclusions and Future Work

Time plan

Licentiate ThesisDefense Friday 25" of March 2005

Draft finished 2 Months before ~ End of January

Timeto write adraft: 10 weeks

Related work, 3 weeks
Regression Analysis, 3 weeks
Impact Analysis, 3weeks
Therest, 1 week

Future Work

The next step in thiswork isto perform an industrial case study evaluating the benefits of performing Regression
Analysis, and astudy onimpact analysis, where we intend to validate the approach by modelling an existing
complex embedded system and use the model to predict how the system will be affected by different changes.
One problem with the approach described in this paper is the error-prone work of constructing the model. Instead
of manually constructing the whole structural model, tools could be developed that mechanically generate at
least parts of it, based on either a static analysis of the code, dynamic analysis of the runtime behavior or a

hybrid approach.

References

1. P. K. Jensen. Automated modeling of real-time implementation. Technical Report BRICS RS-98-51, University of

Aaborg, December 1998.

2. H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman. Discotech: A system for Discovering Architectures from
Running Systems. In Proceedings of the 26th International Conference on Software Engineering, 2004.

3. A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva. Symphony: View-Driven Software Architecture
Reconstruction. In Proceedings of the |EEE/IFIP Working Conference on Software Architecture (WICSA’04).

4. H. Thane, D. Sundmark, J. Huselius, and A. Pettersson. Replay Debugging of Real-Time systems using Time Machines. In
Proceedings of the International Parallel and Distributed Processing Symposium, 2003.

5. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Uppaal — a Tool Suite for Automatic
Verification of Real-Time Systems. In Proc. of Workshop on Verification and Control of Hybrid Systems 111, number 1066
in Lecture Notes in Computer Science, pages 232-243. Springer—Verlag, October 1995.

6. Gerd Behrmann, Alexandre David, Kim G. Larsen, Oliver Mller, Paul Pettersson and Wang Yi. Uppaal - present and
future. In Proc. of 40th IEEE Conference on Decision and Control. IEEE Computer Society Press, 2001.

7.N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. STRESS: A Simulator for Hard Real-Time Systems.
Software-Practive and Experience, 24(6):534,564, 1994.

8. Tripac: RAPID Sim High-Performance Simulation of Real-Time Systems. http://www.tripac.com.

9. S. Manolache, P. Eles, and Z. Peng. Memory and Time-effcient Schedulability Analysis of Task Setswith Stochastic
Execution Time. In Proceedings of the 13nd Euromicro Conference on Real-Time Systems. Department of Computer and
Information Science, Link&ping University, Sweden, 2001.

10. A. Leulseged and N. Nissanke. Probabilistic Analysis of Multi-processor Scheduling of Tasks with Uncertain Parameters.
In Proceedings of the 9th Conferance on Real-Time and Embedded Computing Systems and Applications, pages 317-336,
2003.

11. RapitaSystems homepage, www.rapitasystems.com.

12. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Y ovine. KRONOS: a model-checking tool for real-time
systems. In Computer Aided Verification, CAV'98, 1998.

