
TOLERANCER: A Fault Tolerance Approach for
Cloud Manufacturing Environments

Auday Al-Dulaimy∗, Christian Sicari†, Alessandro V. Papadopoulos∗,
Antonino Galletta†, Massimo Villari†, and Mohammad Ashjaei∗

∗ Mälardalen University, Sweden, email{name.surname}@mdu.se
† University of Messina, Italy, email{name.surname}@unime.it

Abstract—The paper presents an approach to solve the soft-
ware and hardware related failures in edge-cloud environ-
ments, more precisely, in cloud manufacturing environments.
The proposed approach, called TOLERANCER, is composed
of distributed components that continuously interact in a peer to
peer fashion. Such interaction aims to detect stress situations or
node failures, and accordingly, TOLERANCER makes decisions
to avoid or solve any potential system failures. The efficacy of
the proposed approach is validated through a set of experiments,
and the performance evaluation shows that it responds effectively
to different faults scenarios.

Index Terms—Cloud computing, Edge computing, Cloud man-
ufacturing, Fault tolerance, Reliability.

I. INTRODUCTION

In a highly competitive environment, manufacturers need
to enhance their infrastructure to increase revenue. Thus,
they adopted the cloud manufacturing model as it offers an
encapsulated variety of manufacturing resources as services
to meet the demands of customers with lower costs and better
performance. However, cloud manufacturing in its classical
architecture has some limitations. The architecture of the cloud
is of a centralized fashion that assumes stable connectivity to
offer convenient services. But uninterrupted connection cannot
be guaranteed. At the same time, the Industrial Internet of
Things (IIoT) applications need to be able to work even when
the connection is temporarily unavailable or under degraded
conditions. In addition, cloud computing assumes that there
is enough bandwidth to transfer data between the physical
location of the manufacturers’ devices and the cloud data
centers, which is not guaranteed as well. Moreover, trans-
ferring massive data results in network bottlenecks and leads
to latency issues for applications [1], and this may cause a
deterioration in computing performance. Such limitations in
the cloud layer may result in system failures. Thus, the man-
ufacturers utilize the edge computing model to complement
the cloud by decentralizing the compute and storage resources
and moving them closer to the plants and factories aiming at
improving the quality of service.

In the context of manufacturing, the Open Manufacturing
Platform (OMP) stated in one of their white papers [2] that:

This work is supported by the framework of XPRES project at Mälardalen
University.

“Edge computing describes a system of decentralized edge
nodes, which reside near the physical origin of the data.
Edge nodes must be able to run arbitrary containers and
are managed centrally. An edge node connects to both the
cloud level and the production asset level and can temporarily
run offline”. However, systems may fail at the edge layer as
well, mainly due to the low scalability and limited resource
capacity at this layer [3]. What makes providing reliable
and fault tolerances services in manufacturing environments
more complex is the relationships among manufacturers. The
manufacturers need different types of services as the life cycle
of their product development is composed of different stages.
The products’ dynamic, complex, and long life-cycle processes
may result in service failure [4]. Thus, there is a need to
manage the failure that may occur to cloud services offered to
the manufacturing and industrial sectors. Without proper fault
tolerance approaches, multiple manufacturing services will fail
to lead to great losses.

Investigating service failure in cloud manufacturing and
proposing a solution is the aim of this paper. More precisely,
this work is trying to answer the following research questions:

(1) How to design a robust fault tolerance approach to avoid
and/or deal with any possible failure in the nodes that host IIoT
applications?

(2) How to design a hybrid (Proactive/Reactive) fault toler-
ance approach in the edge-cloud manufacturing environments?

The rest of this paper is organized as follows: Section 2
categories and gives a brief literature review of the works done
to solve the problem of system failure. The proposed system
model is presented in Section 3. In Section 4, we perform
extensive experiments to evaluate the proposed approach.
Section 5 concludes the paper.

II. RELATED WORK

This section presents the related works. Most existing fault-
tolerance approaches can be classified into two categories:
proactive approaches to avoid the expense of systems fault by
predicting it in advance and reacting accordingly, and reactive
approaches to handle the system’s fault after happening by
utilizing adequate techniques. However, the literature includes
few hybrid approaches.



There are several related existing proactive approaches.
In [5], the authors proposed a proactive fault tolerance ap-
proach aiming at preventing system faults within the federated
cloud environment. The environment is modeled as a multi-
objective optimization problem that maximizes the profit and
minimizes the VMs migration cost. The approach can re-
distribute VM from faulty providers to non-faulty ones within
the federation. However, this work considered applications that
are served by VMs at the cloud layer and did not consider
the features of the edge nodes. In [6], the authors proposed
a fault-tolerant approach to maintain system availability. The
approach includes the following components: fault manager,
controller, and load balancer that work together to ensure
a fault-tolerant environment via redundancy, optimized se-
lection, and checkpointing. The work in [7] presented an
approach that models the temperature of the CPUs in a
virtualized cluster to expect a potential failure in a specific
physical machine (PM), and accordingly, migrates VMs from
the detected PM to be hosted on another PM. The selection
of the new PM is represented and solved as an optimization
problem. However, this work targeted VMs in the cloud
environment, not containers at the edge. In [8], the authors
proposed a fault-tolerant approach to work in the fog layer. The
approach utilizes the checkpointing technique, and at the same
time, it applies load balancing based on Bayesian classification
to consider the energy efficiency of the fog devices. However,
the approach was not evaluated in a real testbed. The work
in [9] presented a preemptive migration prediction model,
called PreGAN, to detect and classify faults in edge computing
environments. PreGAN can migrate services from one node to
another based on the features of the potential detected failure.

On the other hand, there are related reactive approaches.
In [10], the authors presented a two-stage fault tolerance
approach (off-line and online) to improve the reliability of the
manufacturing network. The off-line stage ranks the manufac-
turing services according to their importance in fault tolerance,
then the critical services are replicated. While the online stage
performs a heuristic algorithm for replacing the failed services.
The work in [11] presented a three-layer approach to solving
the problem of system failure in cloud-edge environments.
The three layers (Application Isolation, Data Transport, and
Multi-cluster Management) work together to re-schedule failed
processes on other available nodes. In [12], a fault-tolerant
approach for recovering the failed IoT edge applications is
presented. It manages and re-configures container-based IoT
software in a reliable way upon software failure detection.
However, the authors stated that the approach is not suitable
to run on low-powered devices. The authors in [13] leveraged
both Primary-Backup (PB) fault-tolerant and Deep-Q-learning-
Network (DQN) techniques to ensure safe execution for the
edge services. However, the approach was not evaluated in a
real environment.

There are also a few hybrid approaches, combining both re-
active and proactive approaches. In [14], the authors presented
a hybrid model to take fault tolerance actions: proactive actions
after predicting the failure probability, and reactive actions that

Cloud

Layer

Edge

Layer

Manufacturing

Layer

Figure 1: System model.

employ replication and checkpointing techniques. The work
in [15] presented a fault-tolerance approach that utilizes two
directions: the first is performing a VM migration based on a
failure prediction technique, and the second is by doing VM
checkpointing.

To the best of our knowledge, our work is the first in
presenting a hybrid fault tolerance approach in cloud man-
ufacturing environment.

III. SYSTEM MODEL

The system model targets the hierarchical edge-cloud com-
puting architecture (Manufacturing Environment) in order to
prevent and/or manage the potential system failures in such
environments. The system is divided into three different layers:
Manufacturing layer, Edge layer, and Cloud layer, as shown
in Figure 1, and it includes NT heterogeneous nodes that are
prone to failure, which are distributed on the edge (NE) and
the cloud (NC) layers, such that NT = NE +NC .

As many manufacturers prefer to process their data on-
site (mainly for security reasons), this work is focusing on
investigating the system failure in the edge layer. The nodes at
the edge layer NE can host VMs and/or containers. Containers
offer a lightweight, portable, and high-performance virtual
entity compared to VMs. In addition, the size of container
images is smaller than VM images. This is better to be adopted
in the constrained devices at the edge layer, and also makes
applications launching faster than VM-based applications [16],
[17].

The manufacturing environment is heterogeneous. It in-
cludes many edge devices, installed at different times, with
different configurations and operating systems. More devices
could be added and integrated into the system anytime. Some
systems adopt a single-master multi-workers architecture to
maintain load balancing and high availability. Such systems are
easier to be managed compared to full peer-to-peer systems.
But at the same time, as the their management depends on a
single master node, they come with a major issue, which is



the potential single point of failure, and consequently, a high
failure rate.

TOLERANCER approach, which works within the man-
ufacturing environment, aims at avoiding any probable single
point of failure. To do so, each node in the system model has
the same role in monitoring and taking fault tolerance actions.
Following this full distributed peer-to-peer architecture, where
each node i ∈ NE is connected with the other nodes, we
designed an approach that can be hosted and run on all edge
devices. The approach’s components are light entities, so that
the nodes with low and medium computational capabilities
(edge nodes) can host them.

Regardless of the type, capabilities, configuration, or oper-
ating system of the device, TOLERANCER can be run on it
if the device can run Dockers. Docker, and any general full
container-based approach, is a perfect option to be considered
in the targeted environment because Docker can encapsulate
the system components and then run on different hardware
and operating systems. Containerization helps in hiding such
differences, automatically fetching and deploying containers
on the nodes. By connecting each device with the other devices
at the edge layer, a federation is created. The federation’s
members are the edge devices which can be configured at the
federation bootstrap or at the run-time. When the federation is
ready, the containers hosted on the edge devices are monitored,
and the statuses of the devices are observed. Each member in
the federation is responsible for the management of itself (no
master node to be recognized in the federation). The member is
also responsible for communicating and exchanging data with
the other members in the federation. In this way, we can avoid
the single (or n-points) point of failure situations. The events
that TOLERANCER can monitor include: (1) high resource
stressing (overloaded), (2) service down, and (3) device off.

The IIoT applications or services are deployed as Docker
containers. The TOLERANCER tries to keep these services
available at any time. When one or more of the previous events
occur, TOLERANCER triggers fault a tolerance action(s) by
involving the related peer or the other peers in the federation.
These actions could be Proactive and/or Reactive actions
The TOLERANCER approach comprises three light key
units: Middleware Unit (MidU), Monitoring Unit (MonU), and
Planning Unit (PlaU). Each node i ∈ NE hosts these units
which are collaborating with each other aiming at avoiding
system failures and resolving them upon the failure detection.
In other words, it is a proactive/reactive approach. The TOL-
ERANCER monitors the system periodically according to a
predefined cycle, and the cycle interval is variable so it can
be tuned based on the system status. The units are described
as follows (Refer to Figure 2):

A. Middleware Unit (MidU)

This unit is composed of two components: the MESSAGE-
BROKER and the SHARED-MEMORY. Both components are
deployed in cluster mode where each edge device runs a single
instance of both components.

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

NE1

NE2 NE3

NE4

NE5NEn

Figure 2: Nodes at the edge layer.

• MESSAGE-BROKER: It is used to exchange messages
between the nodes at the edge layer. To exchange infor-
mation, each node employs its own MESSAGE-BROKER
to send messages to the other peers. It is needed to
guarantee that the system works properly.

• SHARED-MEMORY: This component is used to store all
the information generated by the federation, and to make
it accessed by all nodes ∈ NE . SHARED-MEMORY
stores the information about the federation in general,
and about the nodes themselves. For example, the number
of the edge nodes and devices, their IDs, their health
information, the running containers they host, and the
migration processes carrying on.

All this information is generated and used by the Monitoring
Unit’s components.

B. Monitoring Unit (MonU)

The main functions of this unit are: collecting data about
system status, and analyzing the collected data. To achieve
these functions, MonU includes components that allow to log
and monitor the services running on the edge nodes. The
components are LOGGER and ANALYZER.

• LOGGER: it logs the status of the system and put the
information into a written record periodically, based on
a predefined interval. LOGGER records the following:
(1) CPU usage, (2) Memory usage, (3) container status
(running or failed) which is a SW-related failure that
depends on the application itself, and (4) the device status
(on or off) which is a HW-related failure.
All the data is stored in the SHARED-MEMORY compo-
nent, in order to be available to all nodes in the federation.

• ANALYZER: It is responsible for analyzing the data
stored in the SHARED-MEMORY which are collected by
LOGGER. ANALYZER checks the data related to each
peer individually, and also the whole system status. When
ANALYZER notices any cautionary data that may result



in system failure, it passes an alert to the PlaU to take
an action (proactive/reactive reaction). The cautionary
situation can result in the following cases:
- Case 1: over-utilized CPU and/or memory.
- Case 2: container with a failed state.
- Case 3: device with an off state.

C. Planning Unit (PlaU)

PlaU uses the analysis resulting from MonU (The resulted
three cases), and accordingly, performs fault tolerance ac-
tion(s). Case 1 necessitates a proactive action to maintain
reliability and to avoid any potential failure, while Case
2 and Case 3 necessitate a reactive action as the failure
already happened. PlaU includes two components, they are
SCHEDULER and MIGRATOR.

• SCHEDULER: It is responsible for specifying the follow-
ing operations when migration is needed: the service(s)
to be migrated, the source device(s) that hosts the ser-
vice(s), and the destination device(s) to host the migrated
service(s).
The SCHEDULER uses the data stored in the SHARED-
MEMORY in order to take the decisions. It can employ
different scheduling algorithms like Round Robin or even
more complex ones.

• MIGRATOR: It receives three parameters as input: The
IDs of the source devices, the IDs of the destination
devices, and a list of services to be migrated. The
MIGRATORs on the source and destination devices col-
laborate with each other to perform the migration process.
After migration, the services run on the destination node
and are removed from the source node. If the migration
process does not perform correctly, the MONITOR can
notice this in the next monitoring cycle in order to find
a new destination. The new system status is stored in
the SHARED-MEMORY components of all nodes, so the
nodes in the system will be aware of what is the status
resulted after the migration process.

D. TOLERANCER description

This section describes the communication and the main
processes involved in TOLERANCER using some high-level
pseudo-codes.

1) Communication: Communication inside the TOLER-
ANCER system is done using a special distributed Message
Oriented Middleware (MoM). This MoM is implemented
using RabbitMQ, a very popular open-source project that in
turn implements the Advanced Message Queuing Protocol
(AMQP). The AMQP is very similar to a Publish/Subscribe
protocol, where producers push messages in a queue distin-
guished by a key called “Topic”, and consumers connected to
the same queue read them. AMQP adds a fourth element called
”Exchange” which, in a nutshell, ensures that every message
arrives at the destination, finally guaranteeing a high QoS.
These characteristics ensure stable communication among the
TOLERANCER’s nodes and then good reliability to the
entire system.

2) Processes: The main processes in TOLERANCER are
Logging, Analyzing, Scheduling, and Migration.

The LOGGER works as described in Algorithm 1. It reads
information from the nodes of the system aiming at main-
taining a stable and balanced cluster. The algorithm takes a
specific node as an input and outputs a stored and shared
status about that node. The algorithm is activated for all nodes
periodically based on a predefined period. The information is
collected using an API as described in line 3, and then, in
line 4 this information is stored in the SHARED-MEMORY
together with the current timestamp.

The ANALYZER works in two phases. The first phase is
described in Algorithm 2. Block 2-15 shows that the algorithm
works over all nodes in the federation. For each node, it tries
to get exclusive access using the distributed semaphore that is
managed by the SHARED-MEMORY. Then, the SHARED-
MEMORY gives the status information recorded by the LOG-
GER of the same node to the ANALYZER. The ANALYZER
in step 8 examines the collected information to understand
if the node is working or not. If the node is not working,
The ANALYZER updates the node’s status to FAILED in
step 9. The algorithm is also considering the case when the
node is working but the LOGGER in not updating the node’s
information for a while. In such a case, the ANALYZER will
try to contact the node, and if no response, it will set its status
as FAILED in step 12.

The second phase is described in Algorithm 3. The AN-
ALYZER obtains a list of the failed nodes in the federation
from the SHARED-MEMORY in step 3. For each of the failed
nodes, the algorithm in step 6 tries to access the node’s infor-
mation using the shared semaphore, and in step 7, it gets the
list of the container(s) hosted on the failed node.Then, in block
8-14, the algorithm reschedules each container to be hosted on
a healthy node based on a specific scheduling algorithm. In
this work, we pick the new destination host randomly among
the healthy nodes (step 11). The migration is done through the
MIGRATOR API as it initializes a transaction for accepting
the new container, as described in the Figure 3. The Scheduling
process is repeated in block 9-13 until there are no more
containers to be rescheduled.

The MIGRATOR described in Algorithm 4 is composed of
two functions: send request and receive request.

The send request function is invoked by the ANALYZER
and used to ask the destination node (destination node) to
host the container that was previously hosted in a failed
source node (src node). This function needs to use the
MESSAGE-BROKER’s APIs to send a migration request
to the message queue of the destination node under the
topic /migration request, as shown in step 3. There is
an identifier for each migration request, we refer to it as
migration ID, and it is generated in Step 3. Then, in step
4, the function will use it through the Message Broker’s APIs
to wait for the request’s response. If the request receives a
SUCCESS response, it means that the container is hosted
in the destination node. After that, in step 6, the function
updates the SHARED-MEMORY with the new host of the



Algorithm 1: The LOGGER Algorithm.
Input: The ID of the node Nid

Output: The node’s status information
1 Begin
2 While True
3 x← get system info()
4 SHARED MEMORY.store node info(Nid, x, get current timestamp())
5 End

Algorithm 2: Analyzer Algorithm Part 1.
Input: Set NE of the nodes in the federation.
Output: Analyzed system status, the updated nodes’ status

1 Begin
2 ForEach Nodei ∈ NE

3 try:
4 SHARED MEMORY.acquire node semaphore(Nodei)
5 curr time← get current timestamp()
6 state← SHARED MEMORY.get node info(Nodei)
7 validate state← is healthy(state)
8 If validate state = False
9 SHARED MEMORY.set node state(Nodei, ”FAILED”, curr time)

10 Else If state.timestamp+ INTERV AL CHECK < curr time
11 If try contact(node) = False
12 SHARED MEMORY.set node state(Nodei, ”FAILED”, curr time)

13 catch:
14 continue . If the semaphore is held by other nodes, simply skip
15 end
16 End

Algorithm 3: Analyzer Algorithm Part 2.
Input: Set NE of the nodes in the federation.
Output: Analyzed system status, the updated nodes’ status

1 Begin
2 While True
3 failed nodes← get failed nodes
4 ForEach Nodei ∈ failed nodes
5 try:
6 SHARED MEMORY.acquire node semaphore(Nodei)
7 containers← SHARED MEMORY.get containers in node(Nodei)
8 ForEach container ∈ containers
9 Repeat

10 . SCHEDULER process that randomly picks a healthy node for hosting the container
11 destination node← random choice(Nodes− failed nodes)
12 success←MIGRATOR.send request(Nodei, destination node, container)
13 Until success = False;
14 catch:
15 continue . If the semaphore is held by other nodes, simply skip
16 end
17 End

container.

The receive request function receives the requests. In step
9, the function waits for an incoming migration request mes-
sage in its queue under the topic /migration request. When
the message arrives, the function gets the faulty src node,
the container ID hosted on it, and the migration ID. In step
10, the function uses the SHARED-MEMORY for getting all
information about the container (i.e., the configuration), then it
uses this information for verifying that the container is compat-
ible with the node. If the container is reported as compatible,
the function extracts the command needed for running the
container and executes it in line 13. When it finishes, it sends
a success message to the src node message queue under the

/migration request topic using the migration identifier as
a parameter. The message exchange process between a node
that is analyzing another failed node and a node that may host
a new container is described in Figure 3.

IV. PERFORMANCE EVALUATION

This section evaluates TOLERANCER’s ability to recover
the faults and move all services deployed in the failed node
to another node in the edge layer.

A. Testbed and experiments

Our evaluation testbed is a cluster of nodes that represents
the edge layer for a specific manufacturer. We used five nodes:
four Raspberry Pi4 and one Nvidia Jetson Nano. The cluster



Algorithm 4: Migrator Algorithm
Input: Set NE of the nodes in the federation.
Output: New container-to-host placement, The updated nodes’ status

1 Begin
2 Function send request(src node, destination node, container): bool
3 migration id←MESSAGE BROKER.publish(destination node, ”/migration request”, src node, container)
4 response← wait MESSAGE BROKER.listen(Nid, ”/migration request/ < migration id > ”)
5 If response = True
6 SHARED MEMORY.update container map(src node, destination node, container)
7 Function receive request(): bool
8 While True
9 src node, container,migration id←wait MESSAGE BROKER.listen(Nid, ”/migration request”)

10 container info← SHARED MEMORY.get container info(container)
11 If is compatible(src node, container)
12 run command← container info.run
13 execute run(run command)
14 MESSAGE BROKER.publish(src node, ”/migration request/ < migration id > ”, ”SUCCESS”)

15 End

Figure 3: Migrator message exchange

information is summarized in Table I. To evaluate the proposed
approach, we targeted an edge cluster, deployed services as
containers, run the containers, caused a failure in a specific
node (or nodes) of the cluster by disconnecting it (or them)
from the network, and then examined TOLERANCER ability
to recover the faults. The examination is done by monitoring
the capability of the other active nodes to notice the failure
and start moving all containers hosted on the failed node

to another healthy one. We performed three experiments. In
each experiment, we consider a different cluster, as shown in
Table II. The cluster in experiment 1 consists of 5 nodes, the
cluster in experiment 2 consists of 4 nodes, and the cluster
in experiment 3 consists of 3 nodes. With every experiment,
we run a different number of containers (m), each container
can run Nginx web servers, and then, we caused a failure in
one node. We considered that the failed node hosts and run
a different number of containers as follows: 3, 30, 60, 90,
and 120 containers. Then, we checked if the containers on the
failed node migrate to another healthy node. In addition, we
calculated the time to detect the failure and the time to restore
all the containers hosted in the failed node.

Table I: Cluster’s nodes characteristics.

Name Node CPU Memory

Edge1 Nvidia Jeston Nano 4-core (ARM v8) 64-bit
SoC 2 GHz 4 GB

Edge2 Raspberry Pi 4 4-core (ARM v8) 64-bit
SoC 1.5 GHz 4 GB

Edge3 Raspberry Pi 4 4-core (ARM v8) 64-bit
SoC 1.5 GHz 4 GB

Edge4 Raspberry Pi 4 4-core (ARM v8) 64-bit
SoC 1.5 GHz 8 GB

Edge5 Raspberry Pi 4 4-core (ARM v8) 64-bit
SoC 1.5 GHz 8 GB

Table II: Clusters configurations.

Cluster size Edge1 Edge2 Edge3 Edge4 Edge5
5 nodes X X X X X
3 nodes X X X 7 X
3 nodes X X 7 7 X

B. Result discussion

In this section, we discusses the performance evaluation of
TOLERANCER from the service maintainability perspective.

We set the timing to activate the interval value of the
LOGGER equal to 5 seconds. Time selection is crucial in
meeting the objective of the approach’s design. If the interval
period is too short, it overloads the system performance by
performing more actions (e.g., migration), and if it is too long,



(a) Time to restore in a 5-node cluster

(b) Time to restore in a 4-node cluster

(c) Time to restore in a 3-node cluster

Figure 4: Time to restore in three different clusters.

the approach may not immediately respond to the faults (or to
the possible faults).

After deploying the services and running them, we switched
off one node in the three different clusters. We noticed that all
TOLERANCER’s components responded efficiently to such

Figure 5: Comparing the Time to restore in three different
clusters.

fault. A node failure leads to the following actions:
• The LOGGER of the failed node stops writing the health

status information of the failed node,
• The ANALYZERs of the healthy nodes notice that there

is no information from the failed node, so they try to
contact it. After the no-response, the healthy nodes mark
the status of the off node as failed.

• After detecting the failed node, the ANALYZERs of the
healthy nodes get a list of the containers hosted in the
failed node from the SHARED-MEMORY.

• The SCHEDULERs of the healthy nodes are triggered by
the ANALYZERs, and the fastest of them reschedule the
failed container to be hosted on a new node.

• The node that runs the scheduling process triggers the MI-
GRATOR of the destination node to accept the incoming
container.

• The MIGRATOR of the destination node accepts the
incoming container, runs it, and updates the SHARED-
MEMORY.

However, as most industrial applications are real-time ap-
plications, in each experiment we measured the time needed
to rerun the containers after any system failure. In Figure 4,
the blue bars represent the time needed to restore the failed
containers in the cluster with a fixed number of nodes. We can
see that the time needed to restore the containers is directly
proportional to the number of containers. This is expected as
the migration requests are queued among all the remaining
healthy nodes and hosted by the destination node(s) one by
one. The time required to restore any container is calculated
as in Equation 1:

TRestore = TDetect + TFcontainers +
TRerun

NHdevices
(1)

where:
• TRestore is the time required to restore the failed con-

tainer,
• TDetect is the time required to detect the failure,



• TFcontainer is the time required to find the failed con-
tainer,

• TRerun is the time required to rerun all the failed con-
tainers,

• NHdevices is the number of healthy devices.
In the same figure, we can see the time needed to detect

the failure, which is calculated as in Equation 2:

TDetect = DetectFailureTS − FailureTS (2)

where:
• DetectFailureTS is the detected failure timestamp.
• FailureTS is the failure timestamp.
It is clear from the figure that the failure detection time

(which is represented by orange color) is quite less than the
actual time needed to restore the services. The detection time
is a small part of the total time needed to restore service.
In other words, the figure shows that the longest period to
restore the container is consumed by the scheduling and
migration operations of the PlaU, not by the logging and
analysis operations in the MonU.

To understand the effects of the cluster size (i.e., the
number of nodes in the cluster) on the performance, refer to
Figure 5. It compares between the time required to restore the
containers in the three clusters presented in Figure 4. Each line
describes a single cluster behavior. If we ignore the network
failures, we can conclude that the larger cluster results in better
performance, as the time needed to restore the services is less.
The last part of Equation 1, TRerun

NHdevices
, props this conclusion,

as increasing the number of healthy nodes leads to decrease
the value of this part, and consequently, decrease TRestore.

Moreover, the figure also shows that as the number of failed
containers increases, the gap between the clusters increases
as well. This is because increasing the number of migration
requests creates system congestion that leads to performance
degradation.

V. CONCLUSION AND FUTURE DIRECTIVES

The paper presents an approach, called TOLERANCER, to
solve the software and hardware-related failures in cloud man-
ufacturing environments. TOLERANCER makes decisions to
avoid or solve any potential system faults. Experiments on a
real testbed show that proposed approach provides on-the-fly
automatic actions to handle both hardware and software-based
failures. To mention, this version of the paper includes the per-
formance evaluation of the reactive part of TOLERANCER,
while the performance evaluation of the proactive part will be
shown in an extended version.

Currently, we are working on expanding our approach to
include more results by testing larger clusters, and by trying
different time intervals to find its effects on the system. More
constraint(s) could be considered (e.g., deadline of the running
services). Besides, the nodes at the cloud layer could be
integrated with the nodes at the edge. In addition, managing
other failure types (such as security-related failures) is a future
direction of this work.

REFERENCES

[1] A. Al-Dulaimy, W. Itani, J. Taheri, and M. Shamseddine, “bwslicer: A
bandwidth slicing framework for cloud data centers,” Future Generation
Computer Systems, vol. 112, pp. 767–784, 2020.

[2] Open Manufacturing Platform (OMP), “Edge computing in the
context of open manufacturing,” https://open-manufacturing.org/wp-
content/uploads/sites/101/2021/07/OMP-IIoT-Connectivity-Edge-
Computing-20210701.pdf, 2021, accessed: 2021-10-20.

[3] W. Du, X. Zhang, Q. He, W. Liu, G. Cui, F. Chen, Y. Ji, C. Cai, and
Y. Yang, “Fault-tolerating edge computing with server redundancy based
on a variant of group degree centrality,” in International Conference on
Service-Oriented Computing. Springer, 2020, pp. 198–214.

[4] F. Tao, L. Zhang, Y. Liu, Y. Cheng, L. Wang, and X. Xu, “Manufactur-
ing service management in cloud manufacturing: overview and future
research directions,” Journal of Manufacturing Science and Engineering,
vol. 137, no. 4, 2015.

[5] B. Ray, A. Saha, S. Khatua, and S. Roy, “Proactive fault-tolerance
technique to enhance reliability of cloud service in cloud federation
environment,” IEEE Transactions on Cloud Computing, 2020.

[6] B. Mohammed, M. Kiran, K. M. Maiyama, M. M. Kamala, and I.-
U. Awan, “Failover strategy for fault tolerance in cloud computing
environment,” Software: Practice and Experience, vol. 47, no. 9, pp.
1243–1274, 2017.

[7] J. Liu, S. Wang, A. Zhou, S. A. Kumar, F. Yang, and R. Buyya, “Using
proactive fault-tolerance approach to enhance cloud service reliability,”
IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp. 1191–1202,
2016.

[8] A. Sharif, M. Nickray, and A. Shahidinejad, “Fault-tolerant with load
balancing scheduling in a fog-based iot application,” IET Communica-
tions, vol. 14, no. 16, pp. 2646–2657, 2020.

[9] S. Tuli, G. Casale, and N. R. Jennings, “Pregan: Preemptive migration
prediction network for proactive fault-tolerant edge computing,” arXiv
preprint arXiv:2112.02292, 2021.

[10] Y. Wu, G. Peng, H. Wang, and H. Zhang, “A two-stage fault tolerance
method for large-scale manufacturing network,” IEEE Access, vol. 7,
pp. 81 574–81 592, 2019.

[11] A. Javed, K. Heljanko, A. Buda, and K. Främling, “Cefiot: A fault-
tolerant iot architecture for edge and cloud,” in 2018 IEEE 4th world
forum on internet of things (WF-IoT). IEEE, 2018, pp. 813–818.

[12] K. Olorunnife, K. Lee, and J. Kua, “Automatic failure recovery for
container-based iot edge applications,” Electronics, vol. 10, no. 23, p.
3047, 2021.

[13] T. Long, P. Chen, Y. Xia, N. Jiang, X. Wang, and M. Long, “A
novel fault-tolerant approach to web service composition upon the edge
computing environment,” in International Conference on Web Services.
Springer, 2021, pp. 15–31.

[14] M. Amoon, “A framework for providing a hybrid fault tolerance in cloud
computing,” in 2015 Science and Information Conference (SAI). IEEE,
2015, pp. 844–849.

[15] Y. Sharma, W. Si, D. Sun, and B. Javadi, “Failure-aware energy-efficient
vm consolidation in cloud computing systems,” Future Generation
Computer Systems, vol. 94, pp. 620–633, 2019.

[16] B. I. Ismail, E. M. Goortani, M. B. Ab Karim, W. M. Tat, S. Setapa,
J. Y. Luke, and O. H. Hoe, “Evaluation of docker as edge computing
platform,” in 2015 IEEE Conference on Open Systems (ICOS). IEEE,
2015, pp. 130–135.

[17] A. Celesti, D. Mulfari, A. Galletta, M. Fazio, L. Carnevale, and
M. Villari, “A study on container virtualization for guarantee quality
of service in cloud-of-things,” Future Generation Computer Systems,
vol. 99, p. 356 – 364, 2019.


