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Abstract

Developing and testing of distributed embedded real-time control-
systems is known to be very challenging due to the difficulties of de-
bugging these systems in a target environment (e.g. due to weak moni-
toring capabilities and lack of powerful debugging tools).

The simulation technology described in this industrial experience 
paper is a toolbox aimed to improve the development and testing of 
distributed, CAN-based, embedded real-time control-systems. When
using our technology, a complete control-system can be developed
and tested without, or with only partial, access to target hardware. This
is achieved by replacing target hardware dependent operations (e.g. 
device driver and operating system calls) with simulated equivalences
that allow execution in a regular PC environment using regular PC pro-
gramming tools. Thus, powerful PC tools for debugging, automated
testing, fault injections, and dynamic modelling of the target machine,
are made available for the embedded systems engineer. Complex dy-
namic behaviours can be studied in the simulated environment, with-
out access to the target hardware, e.g. allowing single stepping
through scenarios.

Simulating the complete system also facilitates customer tests and 
end-user evaluation of the system in an early phase of system devel-
opment. It also shortens the turn around time for change, test, and
evaluation, because development can be performed on a single PC in-
stead of a full target system.

1 Introduction

Development and testing of software for 
distributed embedded real-time control sys-
tems is an area with great potential for im-
provements in terms of efficiency, quality, 
and time-to-market. One reason for this is 
that debugging of embedded systems in 
their target environment is challenging, e.g., 
due to the lack of powerful debugging tools 
and the difficulties of monitoring the internal 
software behaviour. Another reason is that 
access to target hardware is often a limiting 
factor in many software development pro-
jects – causing unnecessary delays. 

Figure 1: CCSimTech - a toolbox that im-
proves embedded control system develop-
ment and application engineering.

The simulation technology, CCSimTech,
described in this paper is a toolbox that can
be used to improve and simplify develop-
ment of software for embedded systems.
This is facilitated by replacing all target 
hardware dependencies in the software 



with simulated equivalences - making a 
complete distributed embedded system
executable and testable in a single PC (fig-
ure 1). 

By using CCSimTech, software can be
developed without, or with only partial, ac-
cess to target hardware. In addition, power-
ful PC tools for debugging, automated test-
ing, and fault injection can be used to guar-
antee the functional behaviour of the soft-
ware. This, in turn, simplifies the introduc-
tion of target hardware, since the correct
functional behaviour of the software is al-
ready validated.

2 Embedded System Setting

In order to describe the context in which
the simulation technology is used, we out-
line some common and typical solutions 
and principles used in the design of the
distributed embedded real-time control sys-
tems.

The system architecture can be de-
scribed as a set of computer nodes called
Electronic Control Units (ECUs). These 
nodes are distributed throughout the sys-
tem to reduce cabling, and to provide local 
control over sensors and actuators (typical 
systems are vehicles, mobile machines and
industrial automation). The nodes are inter-
connected by one or more communication 
bus forming the network architecture of the 
distributed system. When several different 
organisations are developing ECUs, the 
bus often acts as the interface between
nodes. The communication buses are typi-
cally low cost and low bandwidth, such as 
the Controller Area Network (CAN) [2] or 
the Local Interconnect Network (LIN) [1].
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Figure 2: Example of embedded system net-
work architecture. 

In the example shown in figure 2, the two
CAN buses are separated using a gateway.
This is an architectural pattern that can be 
used for several reasons, e.g., separation
of criticality, increased total communication
bandwidth, increased fault tolerance, com-
patibility with standard protocols [3], etc.
Also, safety critical functions may require a 
high level of verification, which is usually
very costly.  Thus, non-safety related func-
tions might be separated to reduce cost 
and effort of verification. Services provided 
by the network could also include synchro-
nisation and provide fault tolerance mecha-
nisms.

Sophisticated run-time debugging envi-
ronments are typically infeasible in the real 
target environment, as the nodes are too
resource constrained to provide good sup-
port for debugging.

3 Motivation

Traditionally, embedded system software
is tested using target hardware in a test-
bed laboratory. The system is debugged
using trace print-outs and the IO values are 
checked using oscilloscopes or even a mul-
timeter (see figure 3). These tests are often
labour intensive, time-consuming, inaccu-
rate, and demands full access to all target 
hardware.

Figure 3: Traditional embedded system test-
ing

There are several means by which the 
simulation technology improves the system 
development process, but the primary ob-
jective is to shorten the turn around time for 
change, test, and evaluation in system de-
velopment.

Also, hardware and software can be de-
veloped in parallel. Hence, the software 
development can be started before the
hardware even exists [4][6][7][8]. Moreover,
software development becomes more effi-
cient since every developer does not need
access to (the often) limited hardware units 
or target machines, as the complete distrib-



uted system can be executed on a single
PC.

Furthermore, a simulation-centric design
process [4] enables development of hard-
ware-independent software, since it en-
courages the use of platform independent
software (e.g. layered software with re-
placeable device drivers). This makes the
software developed easier to reuse and 
decreases the cost of future systems. 

Hardware integration problems can be 
tackled early, or in some situations even be
avoided, because functionality tests of 
software components can be done while 
simulating the system. 

When testing the system using the simu-
lation technique, complicated dynamic be-
haviours can be studied in a slowed-down 
environment, and slow behaviours can be 
speeded up. Moreover, some test se-
quences are hard, or even impossible, to 
test using the target machines (e.g. over-
heating or collision detection). Using simu-
lation, such dangerous or difficult test cases
can be explored. 

In addition to the use in software devel-
opment, simulation can be applied in other 
areas and activities, like, e.g., (i) customer
tests and end-user evaluations, (ii) integra-
tion in commercial products/systems, e,g, in
diagnostics applications and aftermarket
tools, (iii) inexpensive training systems and
simulators can be built based on the simu-
lation technology, and (iv) marketing and 
sales support tools, e.g., presentations of a 
product/system.

4 Simulation and Test Environments 

Using CCSimTech, three conceptually
different types of simulation environments 
(complete system simulation, mixed simula-
tion, and target hardware tests) become 
available to develop and test embedded 
control systems. Using these three test en-
vironments, combined with automated test-
tools and an environment model of the sys-
tem to control, we get a complete test solu-
tion for embedded systems and give rise to 
a simulation-centric development process. 
This approach has proven successful in
many different software projects, and has 
been used by, e.g., CC Systems for over 
ten years. 

4.1 Complete System Simulation

In a complete system simulation, all 
nodes, control panels, and environment
models are simulated in a single PC. This is 
the most commonly used test technique by 
CCSimTech users, since no target hard-
ware is needed. Figure 4 presents a com-
plete system simulation.
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Figure 4: An embedded control system simu-
lated in a single PC 

The nodes communicate using a simu-
lated field bus, e.g., CAN. IO-signals be-
tween the nodes and the external devices
(sensors, actuators etc) are simulated using
IO-channels in the PC. The necessary in-
ternal target hardware devices of the nodes 
(EEPROM, Flash, PLD, Power monitor etc.) 
are also simulated. These simulation de-
vices (e.g. CAN, LIN, Flash Memories,
RS232, etc.) are implemented as reusable 
software components. These components 
are at the heart of the simulation technique
and are implemented to support both inter-
nal communication between the simulated 
hardware nodes and communication with 
different devices in the PC. The technical 
issues of CCSimTech are further described 
in Section 5.

To make the simulation-centric develop-
ment process more complete, we have in-
tegrated support for communication with 3rd

party tools. These tools can, e.g., be used 
to build environment models or control 
panel simulations. Also, automated test 
tools, both for unit testing and for system
tests, can be used together with CCSim-
Tech.

The environment models enable simula-
tion of, e.g., mechanical, thermal, and elec-
trical devices, and these models are con-
nected to the simulated hardware nodes 
using simulated IO-ports facilitating a com-
plete system simulation.



A system panel is typically used to con-
trol the start and stop of the simulated 
nodes.

4.2 Mixed Simulation 

In a mixed simulation setting, some target 
hardware nodes are used together with the
simulated system, see figure 5. This type of
simulation is mainly used for two purposes;
firstly, it enables integration of target hard-
ware and hardware related software in a 
controlled step-by-step procedure, secondly
it enables test of the physical communica-
tion between nodes. Furthermore, testing of 
IO-ports is possible.
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Control
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Control System
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Standard PC
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Data acquisition hardware / CAN card

Figure 5: An overview of a mixed simulation
setting

The environmental models and the con-
trol panels are the same as for complete
system simulation. Also, if automated test-
tools are used, the same test scripts can be
used regardless of whether complete sys-
tem simulation or a mixed setting is used. 
Hence, hardware-in-the-loop tests are facili-
tated using the described approach for 
simulating embedded systems.

Real target nodes can be connected to 
the other nodes via, e.g., a PC CAN-card. A 
simulated CAN-bus then connects to the
simulated nodes in the PC. Furthermore,
IO-ports on the external nodes are con-
nected to data acquisition hardware in the
PC (e.g. National Instruments PCI
eXtensions for Instrumentation (PXI)) and
connected to the simulated nodes and envi-
ronmental models. 

4.3 Target Hardware Tests 

During the final phase of the simulation-
centric development process, all target
hardware nodes are used. However, the 
control panel components can still be simu-

lated on the PC and connected to the ex-
ternal nodes through data acquisition hard-
ware in the PC.

To facilitate hardware-in-the-loop testing, 
the target system hardware communicates 
with the environmental model. 
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Figure 6: An overview of a setting for target 
hardware tests

The environmental models and control
panel simulations as used in fully simulated
tests are reused for target system simula-
tion.

5 CCSimTech

As described, CCSimTech enables con-
trol-system software to be developed and 
tested without access to target hardware.
This is achieved by replacing all target 
hardware dependent operations (e.g. de-
vice driver and real-time operating system 
calls) with simulated equivalences. These 
equivalences are the core of CCSimTech.
They are implemented as a set of software
components (figure 7), simulating the be-
haviour of, e.g., CAN, LIN, IO, RS232,
EEPROM, and Flash. 

HW independent

HW dependentPROM

Flash
CAN RS232 IO RTOS

Application Programmer’s Interface

Figure 7: Simulated system software over-
view

It is important to emphasize that the 
software executed on top of CCSimTech
(i.e. the HW independent application in fig-
ure 7) uses the same source code as the
target hardware system does, except that 
the device drivers and the operating system 



are replaced. The application programmer’s 
interface, used to communicate with the 
environment, is the exact same regardless 
of whether the control-system is simulated 
or running on target hardware. This means 
that the target source code can be tested 
and debugged in a very efficient way, com-
pared to black-box testing on hardware. 
Furthermore, powerful tools for debugging, 
automated testing, fault injection, and dy-
namic modelling of environmental models 
of the target machine, available for PC’s, 
can be used to guarantee the functional 
behaviour of the software.

5.1 CCSimTech Limitations 

The technology does not cover all as-
pects of system development, and some 
issues must be specifically addressed: 

 Hardware device drivers must still be 
developed and tested in the target 
hardware.

 Timing properties are different in the 
simulated environment, compared to the 
target environment (further discussed in 
section 5.4). 

 Operating system properties like proc-
ess management and resource handling 
between processes must be considered 
and properly handled in the simulation 
(e.g. stack sizes, mutex- and sema-
phore handling). 

5.2 Structure and Components 

Software for embedded systems is often 
divided into a hardware independent part 
and a hardware dependent part (figure 7). 
Using CCSimTech, the hardware inde-
pendent part is compiled under Windows 
together with simulated equivalences (im-
plemented as reusable software compo-
nents) of the hardware dependent parts 
(e.g. device drivers). These simulated 
equivalences are the core of the simulation 
technology and can be categorised into two 
different groups. 

The first group simulates actual hardware 
components (using a device driver API) and 
includes components used for simulating; 
(i) buses (e.g. CAN, LIN, JI708, and 
RS485), (ii) IO (e.g. Analogue, Digital, 
PWM, PULSE), (iii) Serial communication 
(e.g. RS232), and (iv) components simulat-
ing memory devices (e.g., EEPROM and 
Flash). The second group of software com-
ponents is used for simulation of the fea-

tures of operating systems (e.g. OSE 1 ,
RTXC2 and RUBUS3) and time synchroni-
sation properties (further described in sec-
tion 5.4).

The same simulated components are 
used in all projects, and thus the effort to 
put up a new simulated environment is 
small.

5.3 Integration with COTS tools 

The simulation technique can be inter-
faced from 3rd party software tools that can 
be used for, e.g., complex environmental 
modelling and creation of realistic user in-
terfaces. In order to integrate these tools 
with CCSimTech, the software tool has to 
be able to interface the simulated commu-
nication.

Modelling of the system that is to be 
simulated is an important aspect of the 
simulation, since the better the model re-
flect the real system, the better simulation 
substitute testing on the real system. There 
exist several graphical tools for designing 
the models of the system behavior, e.g., 
MATLAB/Simulink4 or LabVIEW5. In such 
modeling tools the conventional program-
ming in e.g., C/C++ is replaced, or supple-
mented, by a graphical interface from which 
complex models can be created using li-
braries of predefined and user-defined 
functions and modules.  

Using a graphical modeling tool for mod-
eling has several advantages over conven-
tional programming. Firstly, the graphical 
environment uses a view, similar to the 
logical architecture of the real system. Sec-
ondly, model components can be easily 
reused, which reduces the time to create 
new models. Third, the predefined compo-
nent libraries enable creation of complex 
systems with a smaller effort. 

In LabVIEW the simulated communica-
tion can be interfaced using specific model 
components that execute C-code during 
execution. The C-code is used for sending 
and receiving information through the C-
API’s. Connectivity between the simulation 

                                                
1 OSE; www.ose.com 
2 Quadros Systems; www.quadros.com 
3 Arcticus Systems; www.arcticus.se 
4 MathWorks; www.mathworks.com 
5 National Instruments; ni.com 



technique and models created in other 
modeling tools, e.g., MATLAB/Simulink and 
SystemBuild/MATRIXx can be achieved 
using a similar approach. 

Using GUI tools like Macromedia Direc-
tor6 realistic user interfaces can be created 
and connected to the simulation technique. 
This can be used for the marketing pur-
poses or for facilitate cheap training sys-
tems.

5.4 Time Accurate Simulation 

Distributed control systems are often tim-
ing critical, meaning that the behaviour of 
the control system (and the controlled sys-
tem) is dependent on the time when actions 
are taken. Hence, when simulating a dis-
tributed control system it is often important 
to mimic also to timing behaviour of the real 
system (i.e. without a representative timing 
behaviour the functional behaviour will not 
be representative).

To capture and simulate the exactly cor-
rect timing of a distributed system is practi-
cally impossible. Instead one has to make 
do with a "good enough" modelling of the 
timing behaviour of the real system. Then, 
what is good enough? In CCSimTech timed 
events (such as delays and alarms) are 
triggered at the correct simulated time. To 
achieve this, we synchronize the simulated 
nodes based on the amount of target time 
they have accumulated [5]. To support this 
synchronisation, breakpoints are inserted 
into code running on the PC. The time it 
would take the target system to execute the 
code between breakpoints is stored in the 
breakpoints. Each simulated node has its 
own local time counter which is incre-
mented when the code reaches a break-
point.

However, in CCSimTech the execution 
time of application code is not modelled 
between these breakpoints - instead the 
application is executed in the speed pro-
vided by the PC. For multitasking systems 
this means that the simulation may not re-
produce the exact same task switch and 
interleaving patterns as the real-system. 
However, the time accuracy provided by 
CCSimTech is enough to detect most tim-
ing related problems (such as errors 
caused by timeouts and watchdogs) and to 

                                                
6 Macromedia, www.macromedia.com 

allow mixes of simulated and real nodes to 
cooperate.

Certain low-level timing problems may be 
difficult to detect in CCSimTech: 

 Delays caused by overload in nodes. 

 Race-conditions that occur when multi-
ple tasks simultaneously tries to perform 
the same action (such as locking a 
shared resource). 

 Errors that only occur during special 
preemption patterns (e.g. due to failure 
of protecting shared resources). 

 Errors that only occur when unsynchro-
nised tasks sends messages in a spe-
cial order. 

 Bus overload conditions, as we do not 
model the amount of traffic on the CAN 
bus.

 Timing problems caused by messages 
being resent on the CAN bus because 
of electrical interference or other factors 
causing communications problems.  

While representing an important class of 
problems, that are often difficult to detect 
and solve, the simulation accuracy needed 
to address them is beyond the scope of 
CCSimTech. To address these problems 
much more heavy-weight solutions such as 
clock-cycle accurate instruction level simu-
lators (like the ARMulator from ARM [10]) or 
sophisticated systems for event recording 
needs to be used [9].  

The simulated time in CCSimTech can 
be set to progress in real time. In this case 
the simulated system will (on average) exe-
cute at the same pace as would the real 
system. This mode makes it possible to run 
a mix of real nodes and simulated nodes 
together. However, the progress of simu-
lated time can be slowed down, speeded 
up (the maximum speed is limited only by 
the speed of the PC), or even completely 
stopped. The slowing down or stopping of 
the simulated time is very useful when de-
bugging. In this case an erroneous course 
of events could be slowed down, or 
stepped though, and all intermediate states 
could be analysed in a debugging tool. 
Speeding up simulated time is very useful 
when performing automated test se-
quences. In this case a tedious scenario 
could be simulated in a short time, e.g. fa-
cilitating efficient regression testing.  



6 Application - ESAB 

ESAB is one of the world’s largest pro-
ducers of welding consumables and
equipment, with customers in, e.g., trans-
port and off-road vehicle industry, the off-
shore and shipbuilding industry, power,
process and construction industries (figure 
8 shows a typical ESAB welding system). 

ESAB have used traditional methods to test
and debug their control-system functional-
ity. The functional behaviour of the software
was tested by measuring the IO-values on 
the electronic control units (ECU’s) – a 
time-consuming and complicated method.
Increased customer requirements on sys-
tem functionality, leading to shorter release 
time-cycles, made it necessary for ESAB to 
look for new ways to improve efficiency and
quality in software development and test.
ESAB’s choice was to introduce CCSim-
Tech in the development process.

Figure 8: Welding equipment with a CAN-
based, distributed control-system.

A schematic overview of a typical ESAB
welding control-system, in its basic configu-
ration, is illustrated in figure 9. This distrib-
uted, CAN-based, system has three ECU’s;
i) the weld data ECU, managing overall 
control of the welding process and HMI, ii) 
the power source ECU, controlling current
and voltage in the power source, iii) the
wire feed ECU, controlling the feed of weld-
ing wire. 

When ESAB introduced CCSimTech, all 
target hardware dependencies in the con-
trol-system source code were identified and 
replaced with simulated system calls. After
replacing these calls, the system became 
ready for execution in a PC.
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Figure 9: ESAB welding equipment – system
overview.

The results for ESAB where that the
product development cycle and time-to-
market, were shortened. Also, the software 
quality was enhanced (fewer software bugs
in the target system). Today, ESAB uses 
CCSimTech in more or less every new de-
velopment project and has expressed a 
keen interest in using future improvements
and additional components in order to fur-
ther improve the software quality and de-
crease time-to-market.

7 Related Work 

The work presented here is essentially
an API-level simulation of a distributed em-
bedded system. This solution is also known 
as a host-compiled solution, as the code is 
compiled for the host machine and not the 
target.

Real-time operating system companies 
like WindRiver [6] and Enea [7] make API-
level simulators available for their operating 
systems. The solution presented here has 
stronger support for both networked and 
discrete I/O than their solutions, and is also
independent of the operating system used. 

Another level of simulation of distributed 
systems is to use instruction-set simulation
to execute the actual target binaries. This 
gets a step closer to the real target. Re-
garding the use of an operating system in
this context, it can either be emulated (op-
erating system calls are executed directly 
on the host) or executed for real. The emu-
lated solution allows the IO and networking
to be simulated in a way similar to CC Sim-
Tech.

The operating system code can also be
run on the simulator, generating a full-
system simulator [8]. This makes it neces-
sary to construct simulation models of the
actual IO and networking hardware used, 
as well as the appropriate processors and 



boards. The solution is thus less generic, 
but on the other hand, system behaviour 
very close to the real hardware can be ob-
tained, including timing and bus contention. 

8 Conclusions and Future Work 

In this paper, we describe an approach to 
improve software development for embed-
ded distributed real-time systems. We de-
scribe the technology, CCSimTech, and 
how it can be used to facilitate a simulation-
centric software development process. The 
technique can be used during all phases of 
embedded system software development, 
all the way from a system simulated in a 
single PC using automated-test tools and 
environmental models to hardware integra-
tion tests. We also describe the technique 
as used by ESAB,

Our plans for future work include im-
provements of performance issues when 
simulating a large system (typically in the 
range of twenty – thirty simulated nodes). 
Also, we look at extending the technique 
with a number of new software components 
(e.g. other communication buses).
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