
HERO-ML Specification

Version 0.126 ∗

Björn Lisper, Linus Källberg

February 7, 2023

Abstract

HERO-ML is a data-parallel array language, on very high level, which is intended to specify
data parallel algorithms in a concise and platform-independent way. The goal is to support
the software development for heterogeneous systems with different kinds of parallel numerical
accelerators, where programs tend to be very platform-pecific and difficult to develop. Here we
give a specification of HERO-ML including an abstract syntax, and an operational semantics.
The part of the operational semantics that deals with arrays is in the form of sequential
pseudocode, and can be seen as a specification of a reference implementation in a high-level
intermediate format. Such a reference implementation exists, and we give a brief description
of it.

∗This research was funded by the KK-foundation through the HERO project, under grant no. 20180039.

1

Contents

1 Introduction 3

2 HERO-ML Overview 3
2.1 Abstract Arrays, and Bounds . 4
2.2 Types . 5

3 HERO-ML Syntax 5
3.1 HERO-ML Concrete Syntax . 11

4 HERO-ML Functions 12
4.1 Numerical Functions . 12
4.2 Boolean Functions, and Operators . 12
4.3 Conditional Function . 12
4.4 Test for Undefined Value . 12
4.5 Functions on Abstract Arrays . 12
4.6 Functions on Bounds . 13

5 I/O 13

6 A Worked Example: Feed-Forward ANN 14
6.1 Background . 14
6.2 Feed-Forward Networks . 15
6.3 Modeling of Feed-Forward Network Computing with Hero-ML 15

7 HERO-ML Semantics 17

8 Semantics for Join and Meet 22

9 How to Derive Bounds for Forall-expressions 23
9.1 Multi-Dimensional Bounds . 25

9.1.1 Multi-Dimensional Product Bounds . 26
9.1.2 Multi-Dimensional Sparse Bounds . 26
9.1.3 Join and Meet for Multi-Dimensional Sparse Bounds 27
9.1.4 Multi-Dimensional Predicate Bounds . 29

9.2 Bounds for a Class of Linearly Shifted Arrays . 29
9.2.1 Bounds for One-dimensional Shifted Arrays 30
9.2.2 Multi-dimensional Product Bounds . 30
9.2.3 Sparse Multi-Dimensional Bounds . 30
9.2.4 Detecting Index Expressions for Stride-Shifted Arrays 31

10 Possible Future Extensions of HERO-ML 31
10.1 User-Defined Functions and Procedures . 31
10.2 Elemental Overloading, and Promotion of Scalars 31
10.3 Array Syntax for Selection of Substructures . 32
10.4 Other Syntactical Conveniences . 32
10.5 More General Index Types . 32
10.6 A Richer Set of Numerical Types . 32
10.7 User-defined Bounds . 32

11 Reference Implementation 32

A Detecting Index Expressions for Stride-Shifted Arrays 35

2

1 Introduction

There is an ever-growing need for computational power. An area where the need for heavy com-
puting is increasing rapidly is embedded systems, where applications like autonomous vehicles
require massive amounts of computing for tasks like machine learning, advanced signal and im-
age processing, etc. These systems are often real-time systems, and they sometimes have strong
constraints on energy consumption, memory, unit cost, etc. The response from the hardware in-
dustry has been to develop increasingly integrated, heterogenous hardware, where computational
accelerators are placed on the chip or board to offload computationally heavy tasks from the main
processor. In this way, large computational resources can be provided at low cost.

Today we see a large proliferation of accelerator architectures: GPGPU’s (like NVIDIA TESLA1),
many-cores (such as Adapteva Ephiphany2), solutions involving FPGA (e.g., Xilinx ZYNQ3), and
even ASICs. Although these architectures are quite different, they have in common that they
typically rely on massive data parallelism to obtain performance. Besides embedded systems,
these kinds of accelerators are also increasingly being used in traditional HPC as well as cloud
computing: an example of the latter is Microsoft’s Catapult project that integrates FPGAs into
servers4.

Developing software for these heterogenenous systems provides a challenge. Utilizing the ac-
celerators well requires parallel code, but parallel programming can be very hard and error-prone.
The situation is aggravated by the fact that current programming practices for the accelerators
are very dependent on the type of accelerator. For instance, code for a GPGPU will typically be
very different from code for a many-core. This makes the code less portable, and costly redesigns
may be needed if the hardware platform is changed.

A possible way forward is to consider model-based development, where system and software is
specified by high-level models rather than explicit program code. The models can capture different
aspects such as system structure, or program logic. If the model is executable then it can be used
to simulate the aspect of the system that it captures: such models can be used to capture errors
in the design early, and they can also be used as test oracles in the validation phase.

HERO-ML is a data-parallel executable modeling language, intended to be used for very high
level specifications of data parallel algorithms. Such executable specifications can serve as portable
“blueprints” when developing accelerator code, and they can help finding flaws in the algorithms
at an early stage of development. HERO-ML is inspired by data-parallel and array languages such
as *lisp [10], NESL [1], ZPL [2], and HPF [7]. These languages all implement a parallel model of
computation where the parallelism resides in collective operations over data structures, such as
arrays, rather than explicitly in threads or processes. This model of computation is conceptually
much simpler than the control parallelism given by threads and processes, and languages like the
ones mentioned above introduce various high-level concepts and constructs that help writing clear
and concise data parallel code. HERO-ML aims to generalize and unify these concepts. Since
HERO-ML is intended for high-level modeling rather than high performance production code, its
design does not have to make compromises in order to allow for efficient implementations. Thus,
its design can rather focus on providing maximal support for the early modeling phase in the
design of software for parallel accelerators.

2 HERO-ML Overview

HERO-ML is an imperative language extended with a data parallel array data type. The language
is deliberately kept simple, since its main purpose is to demonstrate the principles of very high-
level data parallel programming rather than providing a full-fledged production language. The
sequential part is a standard WHILE language [9], extended with a type for so-called abstract

1https://www.nvidia.com/en-us/data-center/tesla/
2https://www.adapteva.com/introduction/
3https://www.xilinx.com/products/silicon-devices/soc.html
4https://www.microsoft.com/en-us/research/project/project-catapult/

3

arrays (see Section 2.1), a set of array expressions, a statement to evaluate such expressions, and
bind the resulting array to a program variable, and a masked concurrent assignment where all
elements in an existing array that fulfil some condition are updated.

As mentioned, HERO-ML is deliberately kept simple. Thus the current version lacks some
features found in full programming languages. Features that are left out include user-defined
functions and procedures, user-defined types, records, objects, and pointers. It is possible that
some of these features will be added in future versions of HERO-ML.

2.1 Abstract Arrays, and Bounds

Abstract arrays are basically the same as the previously considered data fields [4, 5]. They provide
a generalization of conventional arrays by observing that these really are partial functions from
some domain of indices to a range of values. For conventional, dense arrays the domains are
intervals. Abstract arrays generalise this by also allowing other domains. For instance we can
have sparse arrays, whose domains are general finite sets. In general an abstract array is a pair

(f, bnd)

where bnd is its bound, which is a set representation, and f is a function defining the values of
the array elements for the indices within the bound. Evaluating an abstract array means to first
compute its bound, and then create a table with the array elements that represent the function.
For this to work, the bound must represent a finite set. Some Hero-ML bounds indeed represent
infinite sets, and array expressions with such bounds cannot be evaluated. (Infinite bounds may
seem useless, but the evaluation of abstract arrays has a lazy flavor where such bounds can make
sense.)

HERO-ML supports the following kinds of bounds:

• dense bounds, representing intervals,

• sparse bounds, representing general finite sets,

• predicate bounds, representing (possibly infinite) sets defined by a predicate,

• empty and all, representing the empty and universal set, respectively, and

• product bounds representing cartesian products.

Some two-dimensional bounds are illustrated in Fig. 1. In Section 9.1.2 we introduce a generaliza-
tion of sparse multi-dimensional bounds, where the bound is embedded into a higher-dimensional
space where it constrains certain dimensions. These embedded sparse bounds enables a consider-
ably more precise handling of bounds for multi-dimensional sparse arrays.

The HERO-ML bounds form a complete lattice [9], which means that they have certain math-
ematical properties. Indeed there is a strong relation to static program analysis, and the compu-
tation of bounds can be seen as a kind of run-time value analysis. Some two-dimensional bounds
are illustrated in Fig. 1.

There are three major kinds of array expressions in HERO-ML:

• explicit array expressions, which define arrays through listing their elements,

• array comprehensions, which define arrays with explicit bounds where the elements are
computed according to some rule, and

• forall expressions, which are similar to array comprehensions but have their bounds de-
fined implicitly from the syntax of the expression. This construct is inspired by lambda
abstraction in the lambda calculus, and the rules for computing bounds are designed to
(over)approximate the domain of the partial function defined by the forall exoression. Forall
expressions, and the rules for computing their bounds, are further described in Section 9. (A
variation of forall expressions was also present in Data Field Haskell. See [4] for details.)

4

Figure 1: A dense product bound, a product of a dense and a sparse bound, a product of two
sparse bounds, and a 2D sparse bound. (Adapted from [5].)

In addition there is a masked concurrent assignment of arrays, where array elements that fulfil
some condition are concurrently updated. Together, these array constructs can express basically
all data parallel constructs found in the literature.

An array access out of bounds returns an undefined value, which we denote “?”. However also
array elements within bounds may hold this value. This is since bounds may be over-approximated:
in particular, the rules for deriving implicit bounds for forall expressions may produce such bounds.
This has some consequences for collective operations such as reduce and scan, which will have
to skip such elements. “?” is not accessible at source code level, but HERO-ML has a predicate
isDef that tests whether or not its argument is different from “?” (see Section 4.4).

2.2 Types

HERO-ML is a strongly typed language (all parts of a program must be well-typed for the program
to be well-typed). It is explicitly typed (all declared entities must be given a type). The types are
similar to those found in ML-like functional languages, such as OCaml or Haskell, but with some
restrictions. It has basic types int, float, bool, a polymorhpic type Array ι α for abstract arrays
with indices of type ι and elements of type α, and a type Bounds ι for bounds over indices of type
ι. α can itself be an array data type: thus, HERO-ML supports nested arrays. Array indices are
either integers (for one-dimensional arrays), or tuples of integers (for multi-dimensional arrays).
There is, however, no full-fledged data type for tuples: they appear only as indices to arrays,
within expressions defining bounds, or as arguments to builtin functions and operators, see below.

HERO-ML is not a full-fledged higher-order language. However, builtin functions and oper-
ators have function types. Contrary to higher-order functional languages these functions are on
uncurried form, taking a tuple of individual arguments as argument. For instance the operator
“+” has the type (int, int)→ int, indicating that it takes two arguments of type int and returns
an int. Arithmetic operators are overloaded over the numerical types int, and float: thus, for
example,“+” also has the type (float, f loat)→ float. Implicit type conversion is not permitted:
thus, numerical arguments of different type are not allowed for these operators. HERO-ML also
has collective array operations reduce, and scan, which are higher-order in that they take a binary
function, or operator, as an argument.

3 HERO-ML Syntax

We now specify the format of HERO-ML by an abstract syntax. This syntax is on syntax-tree
level, where the trees are formal expressions, rather than on string level. These trees are close to
parse trees, but with details abstracted away.

A HERO-ML program consists of two parts: a set of type declarations, where each user-defined

5

identifier is given a type, and a statement that provides the code to be executed:

prog → typedecls; s

Here typedecls is a list of type declarations, and s is a statement as defined below. The syntax
for type declarations is given below:

typedecls → Λ | typedecl; typedecls′
typedecl → id : type

type → int | float | bool | Array index type type′
index type → int | (int, int) | (int, int, int) · · ·

Here id is an identifier, and type stands for the types that can be assigned to user-declared entities
(program variables in the current version of HERO-ML). The ellipsis for index types means that
we allow n-tuples of int for any n > 1 as array indices. Thus, HERO-ML has arrays of any (finite)
dimensionality. Λ stands for the empty expression (similar to the empty string for grammars
defining sets of strings).

The formats for identifiers, and numeric literals, are given in Section 3.1.
We now define the statements of HERO-ML. We start with the sequential part, which is fairly

standard (except that array expressions aexp, and bounds expressions bnd, defined later, may
appear within “scalar” expressions):

Integer constant m, n, floating-point constant c

Integer variable i, floating-point variable f , boolean variable b

Array variable a

Bounds variable d

“Scalar” variable y → i | f | b

Arithmetic operator aop→ + | − | ∗ | /

General n-ary function fun

Integer expression

iexp → n | i | iexp aop iexp
| fun(exp1, . . . , expn) | aexp index exp

Floating-point expression

fexp → c | f | fexp aop fexp′
| fun(exp1, . . . , expn) | aexp index exp

Boolean operator bop→ || | &&

Relational operator rop→ = | <

Boolean expression bexp:

bexp → true | false | b
| iexp rop iexp′ | fexp rop fexp′ | bexp bop bexp
| fun(exp1, . . . , expn) | aexp index exp

“Scalar” expression sexp→ iexp | fexp | bexp

Expression exp→ sexp | aexp | bnd

6

HERO-ML statements s:

s → skip | y = sexp
| s; s′ | if bexp then s else s′ | while bexp do s
| d = bnd
| a assign

We now turn to the array-specific part. We define abstract syntax for bounds expressions,
array expressions, and array assignments. But first we define the syntax for array arguments and
set elements, respectively:

Index expressions index exp:

index exp → [iexp] | [iexp1, . . . , iexpm]

Set elements, and -expressions set el var, set el exp:

set el var → i | (i1, . . . , im)
set el exp → iexp | (iexp1, . . . , iexpm)

Bounds expression bnd:

bnd → empty | all | d | iexp..iexp′ | {set el exp1, . . . , set el expm}
| {set el var : bexp} | (bnd1, . . . , bndn)
| fun(exp1, . . . , expn) | aexp index exp

Array expression aexp:

aexp → a | [exp : set el var in bnd]
| forall set el var → exp | aexp|bnd | expl array
| fun(exp1, . . . , expn) | aexp index exp

Explicit array expression expl array:

db → iexp..iexp′ | iexp.. | ..iexp
db′ → Λ | db

preamble → Λ | db : | (db′1, . . . , db
′
n)

elist(1) → exp1, . . . , expk
elist(n) → elist(n− 1); . . . ; elist(n− 1); n > 1

expl array → [preamble elist(n)]
| [set el exp1 : exp1, . . . , set el expn : expn]

Explicit arrays, as the name suggests, have their elements explicitly given. The syntax allows
the specification of both dense and sparse arrays, also multi-dimensional. Dense arrays are
specified through lists of elements, which are nested for higher-dimensional arrays. Sparse
arrays are defined by a list of index/element pairs.

Array assignment a assign:

a assign → a = aexp
| a index exp1 · · · index expn = exp
| foreach set el var in bnd do a index exp1 · · · index expn = exp

We now informally describe each new construct for creating bounds, abstract arrays, and
assignment of such arrays. We also provide examples of their use.

Bounds:

7

• empty, all

Description: corresponds to the empty and universal set, respectively.

Example: empty, all

Explanation:

• d

Description: variable holding an already evaluated bound.

Example:

Explanation:

• iexp..iexp′

Description: an interval bound (also called dense bound).

Example: 1..10

Explanation: denotes the interval from 1 to 10.

• {set el1, . . . , set elm}

Description: a finite, possibly irregular set, called a sparse bound.

Example: {(0,1),(3,2),(0,-1),(2,2)}

Explanation: a sparse two-dimensional bound with four elements.

• {set el var : bexp}

Description: a so-called predicate bound, a possibly infinite set defined by a predicate.

Example: {(i,j) : i+j > 0}

Explanation: the set of all (i,j) such that i+j > 0.

• (bnd1, . . . , bndn)

Description: cartesian product bound formed from n bounds.

Example: (1..10,1..25)

Explanation: the 2-D bound for a 10× 25 dense matrix, formed from two 1-D bounds.

• aexp index exp

Description: access of an element in an array of bounds

Example: [i..i+5 : i in 1..10][3] = 3..8

Explanation:

In addition there are a number of functions that return bounds. See Section 4.

Abstract Arrays:

• a

Description: array variable holding an already evaluated array.

Example:

Explanation:

• [exp : set el var in bnd]

8

Description: array comprehension (definition of array with explicit bound).

Example: [2*i : i in 1..10]

Explanation: array with bound 1..10, and elements 2*i.

• forall set el var → exp

Description: array definition with implicit bounds, and syntax similar to lambda-abstraction.
(Rules for how to compute the bounds are given in Section 9.)

Example: forall i -> a[i] + b[i]

Explanation: elementwise addition of a and b, computing the bound from those of a and b.

• aexp | bnd

Description: subarray of aexp defined by bnd.

Example: a | 1..10

Explanation: the subarray of a from 1 to 10.

• aexp index exp

Description: access of an element in a possibly nested array of arrays.

Example: a[3]

Explanation: selection of element three, which is an array, from an array of arrays.

• [preamble elist(n)]

Description: dense, possibly multidimensional, explicit array expression. “preamble” speci-
fies the (possibly multi-dimensional) dense bounds. Bounds can be omitted, and then
defaults to a bound with lower limit 0. “elist(n)” specifies an n-dimensional array, and
it is a possibly nested, semicolon-separated list of lists where the lowest level specifies
the array elements in comma-separated lists.

Example 1: [2.. : 1,3,2]

Explanation: a dense one-dimensional array with bound 2..4, and three elements 1, 3, 2.
Elements are explicitly given, hence the name.

Example 2: [..4 : 1,3,2]

Explanation: same array as above, but specified through the upper limit for the interval.

Example 3: [1,3,2]

Explanation: an array with the same elements as above, but bound 0..2 (similar to an array
in C).

Example 4: [(1..2,1..3) : 1,2,3; 4,5,6;]

Explanation: a 2D-array (matrix) with rows 1,2,3, and 4,5,6. (The last semi-colon can be
dropped.)

Example 5: [1,2,3; 4,5,6;]

Explanation: a 2D-array like in Example 4, but with default bounds (0..1,0..2).

Example 6: [(,,98..100) : 1,2,3; 4,5,6;; 7,8,9; 10,11,12;; 13,14,15; 16,17,18;;]

Explanation: a 3D-array with bounds (0..2,0..1,98..100). (The two first are default
bounds.) If we name the array “A”, then A[1,0,99] = 8.

• [set el exp1 : exp1, . . . , set el expn : expn]

Description: explicit sparse array expression.

9

Example: [(1,1):4.7, (2,3):0.01, (3,5):3.14]

Explanation: a sparse two-dimensional array with bound {(1,1), (2,3), 3,5)}, and three
elements 4.7, 0.01, 3.14. Like for dense explicit arrays bound and elements are explic-
itly given, hence the name. It is an error to define the value for the same index more
than once.

In addition there are a number of functions that return arrays. See Section 4.

Abstract Array Assignments:

• a = aexp

Description: creates a new abstract array by evaluating aexp, and sets a to hold it.

Example: a = [2*i : i in 1..10]

Explanation: sets a to the new array defined by the array expression.

• a index exp1 · · · index expn = exp

Description: Assignment of an array element (including assigning an array within a nested
array).

Example: a[j] = [2*i : i in 1..10]

Explanation: sets a[j] to the new array defined by the array expression. (Here, a is an
array of arrays.)

• foreach set el var in bnd do a index exp1 · · · index expn = exp

Description: destructive, masked update where a index exp1 · · · index expn is set to exp for
all values of set el var that belong to bnd and where exp is defined. Note that if n > 1
or m > 1 then the corresponding array is nested.

Example (not nested): foreach i in 1..10 do x[i+1] = y[i-1]

Explanation: set x[i+1] to y[i-1] for all i in 1..10 where y[i-1] is defined.

Example (nested): foreach i in 1..10 do x[i][i+1] = y[3][i-1]

Explanation: set x[i][i+1] to y[3][i-1] for all i in 1..10 where y[3][i-1] is defined.

Note: it might be that the same element in the left-hand side is targeted by the right-hand
side for more than one value of i. This implies a write conflict, and the value of the
targeted array element is then non-deterministically set to one of the values written
there. An error also occurs if, for some i, the target address for the left-hand side is
out of bounds.

Example (write conflict): foreach i in 1..10 do x[1] = y[i]

Explanation: here there is an attempt to write several elements of y to x[1].

Example (write out of bounds): foreach i in 1..10 do x[i] = y[i], where bound(x) =
1..9

Explanation: if y[10] is defined then there is an attempt to write it to x[10], which is out
of bounds.

10

3.1 HERO-ML Concrete Syntax

We now address the most relevant aspects of the concrete syntax of HERO-ML that either differ
from or are left unspecified in the abstract syntax used throughout the rest of this document.
To begin with, the part of HERO-ML dealing with scalar computations mostly adheres to the
“standard” syntax rules found in most conventional languages such as C. Specifically this means
that infix notation is used for the arithmetic, relational, and logical operators +, -, *, /, % (integer
remainder), <, <= and so on, and that these follow the usual operator precedence and associativity
rules. Also, integer, floating-point, and boolean literals as well as variable names all follow standard
formats, with the exception that variable names are allowed to include a trailing sequence of single
quotes, as in, e.g., x’ and y’’, which is somewhat less conventional.

The language only defines two specific infix operators for bounds and arrays, and these are
the “|” operator used to perform “array slicing”, and the double-dot operator “..” used to
specify dense bounds. Insofar as these operators need precedences and associativities to resolve
syntactical ambiguities, these have mostly been chosen in the natural way given the type rules of the
language. For example, for an ambiguous expression like arr | bnd1 | bnd2, only the interpretation
(arr | bnd1) | bnd2 makes sense, since the alternative interpretation arr |(bnd1 | bnd2) would give
rise to a type error in the second slicing operation. However, one true source of ambiguity is
when a forall expression is immediately followed by an array slicing operation. For example, the
expression forall i → arr[i] | bnd could be interpreted either as (forall i → arr[i]) | bnd or as
forall i → (arr[i] | bnd), where the second variant can make sense if arr is an array of arrays.
This ambiguity has been resolved in favor of the first variant, as using the | operator to slice the
result of a forall expression should be the more common use case. In the case of nested forall
expressions followed by a slicing operation, forall i → forall j → . . . | bnd, an ambiguity arises
as to which forall expression the slicing should be attached to. Analogously to how the classical
“dangling else” problem is commonly resolved, HERO-ML lets this “dangling slice” be attached
to the rightmost forall expression.

Similarly to some languages such as Python and F#, HERO-ML is sensitive to how the code is
indented to allow for a more lightweight syntax, where statements and variable declarations can be
terminated with simple line breaks as opposed to explicit characters like semicolons, and the block
structure of the program can be expressed by changes in indentation instead of parentheses or
special keywords. At the beginning of each new block—that is, after the “do” keyword in a while
statement or after the “then” and “else” keywords in an if-else statement—the first statement to
appear sets a base indentation for the rest of the block. This first statement, which is allowed to
be on the same line as the preceding keyword, must be at least one character position to the right
of the indentation of the surrounding block, otherwise the block is considered empty. Then the
indentation of each subsequent line of code (ignoring blank lines) is compared against the block’s
base indentation, and the following version of the “offside rule” is applied:

• If a line starts at a column number that coincides with the current indentation, then it is
considered the beginning of a new statement inside the current code block. This is as if an
invisible semicolon character had appeared to mark the end of the statement on the previous
line. It is a syntax error, of course, if the statement on the previous line was not syntactically
complete.

• If the new line starts strictly to the right of the indentation, then it is instead counted as
a continuation of the previous line, as if no line break had appeared at all. This way long
statements can be split over multiple lines by having the continuation lines be indented
relative to the first line.

• If a line starts strictly to the left of the current indentation, then this marks the termination of
the current code block (and of the previous statement). The same rules are then applied again
to the same line but in the surrounding block and relative to that block’s base indentation.
Note that this can lead to the closing of multiple nested blocks at the same time.

11

Mainly the same principles also apply to the global scope of the program, where the first non-
blank line in the program sets the indentation of the global scope. However, an exception to the
last rule above applies if the base indentation is non-zero, as there is no surrounding block to exit
to in this case. Then the base indentation is instead simply adjusted to be the same as that of
the “offside” line from that point on.

An exception is also made for expressions enclosed in parentheses (including square brackets
and curly braces). As there are no statements or declarations inside of the parentheses to delimit,
the indentation rules are simply suspended there, up to and including the closing parenthesis,
meaning that all indentation and line breaks are ignored altogether. The main motivation for this
is to allow a more liberal use of indentation and line breaking when formatting explicit matrix
expressions in a program. Finally, the syntax allows for semicolons as an alternative way to delimit
statements, which makes it possible to put multiple statements on the same line.

4 HERO-ML Functions

The HERO-ML grammar has a case fun(exp1, . . . , expn) for functions. This case is matched by
a number of functions in HERO-ML, where some provide important features. We therefore give
an account here for the functions in HERO-ML.

4.1 Numerical Functions

HERO-ML will come with a set of numerical functions, where the argument and result types are
numerical. The exact selection of functions is not decided yet, but will be very much standard
including standard scientific functions.

4.2 Boolean Functions, and Operators

not : bool→ bool provides logical negation.

The boolean operators ||, && have a semantics where their arguments are evaluated from left to
right, and the evaluation is stopped as soon as the outcome is known. Thus, they are non-strict in
their second argument since it is not always evaluated. (Non-strict here means that the function
may return a defined value even if the argument is undefined.)

4.3 Conditional Function

HERO-ML has a conditional function if : (bool, α, α)→ α, where α is a type variable.

Example: if(x > 0,5,7) evaluates to 5 if x > 0 in the current environment, and to 7 otherwise.

4.4 Test for Undefined Value

isDef : α→ bool tests whether or not its argument is different from the undefined value “?”.

Examples: isDef(17) = true, isDef(?) = false.

4.5 Functions on Abstract Arrays

bound : (Array ι α)→ Bound ι. bound(a) extracts the bound from the array a.

Example: bound([2..4 : 1,3,2]) = 2..4.

reduce : ((α, α)→ α,Array ι α)→ α. reduce(f, a) “sums” the elements in the array a using the
binary function/operator f .

Example: reduce(+,[2..4 : 1,3,2]) = 1 + 3 + 2 = 6.

12

scan : ((α, α) → α,Array ι α) → Array ι α. Like reduce, but computes an array with all
the“partial sums”. The bound is the same as for a, and the “partial sums” are computed in the
lexicographic order over bound(a).

Example: scan(+,[2..4 : 1,3,2]) = [2..4 : 1,4,6]

4.6 Functions on Bounds

HERO-ML has many functions on bounds. Many of these are used to implement the implicit
derivation of bounds that takes place when array-valued expressions, such as forall-expressions,
are evaluated. They are exposed at the user level primarily to allow the manual tailoring of bounds
in cases when the implicit bounds derivation does not yield a satisfactory result. The functions
can also be seen as providing an interface for bounds: any set representation that implements
these functions (such that they have certain prescribed properties) can be used as bounds.

member : (ι, Bounds ι)→ bool: member(i, bnd) returns true when i is a member of the set defined
by bnd.

join,meet : (Bounds ι,Bounds ι) → Bounds ι. Lattice-theoretical t and u, respectively, in the
lattice of bounds over Bounds ι (approximating set union and -intersection). Their semantics are
given in Section 8.

Example (dense 1-D bounds): meet(1..10,5..30) = 5..10, join(1..10,20..30) = 1..30.

isDense, isSparse, isPredicate, isProduct : (Bounds ι)→ bool: they all test whether their argu-
ments are of the corresponding type.

finite : (Bounds ι) → bool: finite(bnd) is true iff bnd is classified as finite (i.e., if bnd is dense,
sparse, empty, or a product of finite bounds).

size : (Bounds ι)→ int: size(bnd) returns the number of elements in the finite bound bnd. It is
undefined for infinite bounds.

enum : (Bounds ι) → Array int ι: enum(bnd) provides an enumeration of the elements in the
finite bound bnd, in lexicographic order, in the form of an array with bound 0..size(bnd) − 1
containing the elements of bnd in this order. Undefined for infinite bounds.

Example (sparse 1-D bound): enum({3,1,7}) = [0..2 : 1,3,7].

Note: enum is currently not visible in HERO-ML. It is however visible (and used) in intermediate
layers. It is also used in the semantics for functions such as reduce, and scan.

5 I/O

To allow programs to communicate with the surrounding environment, HERO-ML provides a
simple model where programs have access to an input pipe and an output pipe. HERO-ML values
can be read using the “in” operator, and written using an out statement. In the abstract syntax
in Section 3 the grammars for expressions, and statements are extended with the following cases:

exp → in type
s → out | out exp | out exp1, . . . , expn

Thus in type reads a HERO-ML value of type type from the input pipe, and out exp writes the
value of exp to the output pipe. out can also write multiple expressions given as a comma-separated
list, and it can also be executed without any arguments in which case a kind of marker is written
to the output pipe.

in has to be typed since HERO-ML is a strongly and explicitly typed language. Reading a
value of the wrong type will give a runtime error.

13

xn

x1

Σ

w1

wn

Figure 2: McCulloch-Pitts neuron.

Values of any type can be read and written: however they will always be evaluated. For
example, the statement out x+ y evaluates the expression x+ y and then writes the result to the
output pipe. An example of the use of in is the following:

x = 23 + in int ∗ y

Here an integer value is read from the input pipe, it is multiplied by the variable y, 23 is added,
and then result is stored in the variable x.

HERO-ML only knows the in and out primitives for communicating with the environment.
It hs no means to connect the input and output pipes to any particular channels. What these
pipes are connected to can therefore be adapted outside HERO-ML for the specific environment.
For example, an interpreter/debugger for the language could simply let the data coming through
the output pipe be written to the screen or to a log file, and it could similarly have the input
pipe be connected to a user prompt or a file. On the other hand, when translating a HERO-ML
program to code for some target platform, the pipes would typically be mapped to the specific
I/O mechanisms of that platform. For instance, if a program were to be translated into a CUDA
kernel, then the pipes could be mapped to input/output parameters of the kernel.

6 A Worked Example: Feed-Forward ANN

We now show how the computation performed by a classical feed-forward network can be modeled
in HERO-ML.

6.1 Background

An Artificial Neural Network (ANN) is a computational structure whose way of working is inspired
by how the nervous system works in living beings. Such nervous systems typically have the
following characteristics:

• they are composed out of many small, interconnected units (the neurons),

• the interconnection is typically sparse, i.e., each neuron is connected only to a few other
neurons,

• each neuron has an activity level, which is a affected by the activity levels of the neurons
that it is connected to, and

• the activity level of a neuron is a highly non-linear function of the activity levels of its
connected neurons. In particular there are thresholding effects caused by the activity level
being saturated.

ANN’s are mimicking this. There are many variations. A claassical example is the McCulloch-
Pitts neuron, where the activity level of a neuron is computed by thresholding a weighted sum of
the activity levels of its neighbours. See Fig. 2.

14

output layer

hidden layers

input layer

layer l

layer l−1
wlij

i

j

Figure 3: Layers in a feed-forward network.

6.2 Feed-Forward Networks

In a feed-forward network the units are arranged in a number of layers, where each interconnection
goes from some layer l − 1 to layer l. See Fig. 3. There are three kinds of layers:

• an input layer, which provides the input to the ANN,

• a number of hidden layers, which contain units interconnected between layers similarly to
the McCulloch-Pitts neuron in Fig. 2, and

• an output layer, which provides the output (or response) from the ANN given a certain
input.

The input is basically an array of numbers. It can, for instance, be a pixel matrix encoding a
picture. The output is also an array of numbers that encodes the output. It can, for instance,
represent a classification of some object in the picture.

Each unit in a hidden layer computes its output as a weighted, thresholded sum of the outputs
of the connected units in the previous layers, similarly to the McCulloch-Pitts neuron in Fig. 2.
Mathematically, output zlj from unit j in layer l is computed as

zli = s(
∑
j

wlijzl−1j) (1)

where the sum ranges over the units j in layer l − 1 that are connected to unit i in layer l. wlij

is the weight of the connection from j in layer l − 1 to i in layer l. s is commonly chosen as the
sigmoid function, defined by

s(x) =
1

1 + e−x
(2)

The sigmoid function provides a “soft” thresholding, see the sketch in Fig. 4.
The weights are very important. They provide the knowledge that is stored in the network.

Training the network means to set the weights in order to have a response from the network that
is as close as possible to the desired output. A feed-forward network with hidden layers is a kind
of Deep Neural Network (DNN), and training such a network is called deep learning. There are
systematic methods, such as back-propagation, to do this, but we will not treat this further here.

6.3 Modeling of Feed-Forward Network Computing with Hero-ML

We will now show how to model one particular way of computing the output from a trained
feed-forward network, given some input. We will use nested arrays, where the nesting reflects the
structuring of the network into layers. More specifically z will be an array of arrays, where z[l]

15

x

1
s(x)

Figure 4: The sigmoid function.

z

z[0]

z[1]

z[2]

w[1]

w[2]

w

Figure 5: A nested array representation of layers in a feed-forward network.

holds the output values of the units in layer l. The weights will be stored in an array of matrices
w, where w[l] is a matrix where each element w[l][i,j] holds the weight for the connection from
unit j in layer l-1 to unit i in layer l. The types of z and w are as follows:

z : Array int (Array int float)

w : Array int (Array (int,int) float)

Note that w[l] might be a sparse matrix, with a sparse bound. We assume that the arrays z and
w themselves have dense bounds 0..n-1 and 1..n-1, respectively, where n is the number of layers.
Fig. 5 shows an example with an input layer with three units, a hidden layer with five units, and
an output layer with two units. We can note that the nested array representation easily can handle
the fact that different layers can hold different numbers of units in feed-forward networks.

We now give HERO-ML code for the computation. We use the following declarations5:

s(x) = 1/(1 + exp (-x)) // sigmoid function

sum(a) = reduce(+,a) // sum over abstract array

We assume that the input to the computation is stored in the array input. First, the input layer
z[0] is assigned this array. Then the code loops over the other layers, computing z[l] from a
matrix-array multiplication of z[l-1] and w[l] followed by a thresholding of the elements in the
resulting array:

z[0] = input;

l = 1;

5HERO-ML does not have function definitions, but we can see these declarations as macros.

16

while l < n do

z[l] = forall i -> s(sum(forall j -> (w[l][i,j] * z[l-1][j])));

l = l + 1

This version creates a new abstract array for each array assignment. As an alternative we can
instead use a foreach statement, which performs an in-place update:

foreach i in bound(z[0]) do z[0][i] = input[i];

l = 1;

while l < n do

foreach i in bound(z[l]) do

z[l][i] = s(sum(forall j -> (w[l][i,j] * z[l-1][j])));

l = l + 1

What if we instead choose to use flat (non-nested) arrays? z then turns ito a matrix, and w

becomes a three-dimensional tensor. Their types will now be as follows:

z : Array (int,int) float

w : Array (int,int,int) float

For each iteration l, row l in z will now be updated. This is accomplished by a foreach statement
where the elements to be updated are selected from this row. We obtain the following code:

foreach i in bound(forall j -> z[0,j]) do z[0,i] = input[i];

l = 1;

while l < n do

foreach i in bound(forall j -> z[l,j]) do

z[l,i] = s(sum(forall j -> (w[l,i,j] * z[l-1,j])));

l = l + 1

Here the l’th row is extracted using a forall expression.
A disadvantage with flat arrays is that if z has a dense bound (a regular matrix) then all layers

will be modeled to have the same number of units. There are of course ways around this, but the
nested array approach still seems to provide a better fit.

7 HERO-ML Semantics

We now present a sequential operational semantics for HERO-ML. The semantics is structured
into two parts:

1. For statements, the semantics is given as rules for state transitions, and

2. for expressions we define an eval function that evaluates expressions relative to the current
state.

The semantics for statements, excluding assignments involving abstract arrays, is quite standard.
The rules for state transitions have the form (s, S) → S′ where s is a statement, S is a function
from program variables to values (a so-called store), expressing the current contents of the memory
before executing the statement, and S′ is a store expressing the memory contents after having
executed s. We give this part in Fig. 6. (Masked update of abstract arrays will be treated later.)

Computations can return the undefined value “?”. The semantics has special rules covering
the cases where boolean conditions that affect the program flow become undefined. In such a case
the program goes into a particular error state, where it halts.

Array indices and set elements can be either integers, or integer tuples. For simplicity we
assume that they are integers in this section. The extension to integer tuples is straightforward,
but tedious.

17

(skip, S)→ S (y = sexp, S)→ S[y 7→ eval(sexp, S, ∅)]
(s, S)→ S′′ (s′, S′′)→ S′

(s; s′, S)→ S′

eval(bexp, S, ∅) = true (s, S)→ S′

(if bexp then s else s′, S)→ S′
eval(bexp, S, ∅) = false (s′, S)→ S′

(if bexp then s else s′, S)→ S′

eval(bexp, S, ∅) = true (s, S)→ S′′ (while bexp do s, S′′)→ S′

(while bexp do s, S)→ S′
eval(bexp, S, ∅) = false

(while bexp do s, S)→ S

eval(bexp, S, ∅) = ?

(if bexp then s else s′, S)→ ERROR

eval(bexp, S, ∅) = ?

(while bexp do s, S)→ ERROR

(a = aexp, S)→ S[a 7→ eval(aexp, S, ∅)]
ij = eval(iexpj , S, ∅) ∈ bound(a iexp1 · · · iexpj−1), j = 1, . . . , n

(a iexp1 · · · iexpn = exp, S)→ S[a[i1] · · · [in] 7→ eval(exp, S, ∅)]

Figure 6: Operational semantics for the sequential statements of HERO-ML.

The notation S[y 7→ v] is used to denote a store with the same contents as S except that
S[y 7→ v](y) = v. In the last transition rule in Fig. 6 we extend this notation in order to express
update of array elements. This rule gives semantics to assignments of elements in possibly nested
arrays. It simply expresses that first all array indices are evaluated, and if they are all within
bounds then the corresponding array element is replaced with the value obtained by evaluating
the right-hand side.

HERO-ML expressions are evaluated using the eval function. Usually this function takes two
arguments: the expression to be evaluated, and a store that gives the current memory contents.
Here eval also takes a third argument, which is a set of variables that are bound on some outer
level. This turns out to be needed since HERO-ML has three variable-binding constructs: predicate
bounds, array comprehensions, and forall expressions. Within such expressions eval might return
values that are symbolic expressions in the bound variables. However note that on the top level,
for statements, eval will always return a constant value.

We now define eval for the various kinds of expressions found in HERO-ML. We do this in a
rewriting style, where each equation can be seen as a rewrite rule where (sub)expressions matching
the left-hand side of the rule are transformed into the corresponding instance of the right-hand
side. An expression that cannot be rewritten further is called a normal form (or nf). Simple
constants are normal forms, but more complex expressions possibly containing both bound and
free variables can also be normal forms. A normal form that contains no free variables is closed.

For the “standard” expressions of HERO-ML we skip the division of expressions into different
types from Section 3. We use c for constants, x for variables, e for expressions, and f for n-ary
functions except those that are otherwise defined. Every n-ary function f has its semantics defined
by a number of equations f(c1, . . . , cn) = c, where c1, . . . , cn are constants and c is some constant.

18

Let S be a store, and BV a set of bound variables. Then:

eval(c, S,BV) = c
eval(x, S,BV) = S(x), x /∈ BV
eval(x, S,BV) = x, x ∈ BV

eval(if(bexpr, e, e′), S,BV) = eval(e, S,BV), eval(bexpr, S,BV) = true
eval(if(bexpr, e, e′), S,BV) = eval(e′, S,BV), eval(bexpr, S,BV) = false
eval(if(bexpr, e, e′), S,BV) = ?, eval(bexpr, S,BV) = ?
eval(if(bexpr, e, e′), S,BV) = if(eval(bexpr, S,BV), eval(e, S,BV), eval(e′, S,BV)), otherwise
eval(bexpr || bexpr′), S,BV) = true if eval(bexpr, S,BV) = true
eval(bexpr || bexpr′), S,BV) = eval(bexpr′, S,BV) if eval(bexpr, S,BV) = false
eval(bexpr || bexpr′), S,BV) = ? if eval(bexpr, S,BV) = ?
eval(bexpr || bexpr′), S,BV) = eval(bexpr, S,BV) || eval(bexpr′, S,BV), otherwise

eval(bexpr && bexpr′), S,BV) = false if eval(bexpr, S,BV) = false
eval(bexpr && bexpr′), S,BV) = eval(bexpr′, S,BV) if eval(bexpr, S,BV) = true
eval(bexpr && bexpr′), S,BV) = ? if eval(bexpr, S,BV) = ?
eval(bexpr && bexpr′), S,BV) = eval(bexpr, S,BV) && eval(bexpr′, S,BV), otherwise

eval(f(e1, . . . , en), S,BV) = c when eval(ei, S,BV) = ci for i = 1, . . . , n
eval(f(e1, . . . , en), S,BV) = f(eval(e1, S,BV), . . . , eval(en, S,BV)) otherwise

We assume that the functions f are “?-strict” in all their arguments, that is: ? is returned as soon
as some argument is ?. Next, we define eval for bounds expressions:

eval(c, S,BV) = c, c = empty, all
eval(d, S,BV) = S(d)

eval(iexp..iexp′, S,BV) = eval(iexp, S,BV)..eval(iexp′, S,BV)
eval({iexp1, . . . , iexpm}, S,BV) = {eval(iexp1, , S,BV) . . . , eval(iexpm, S,BV)}

eval({i : bexp}, S,BV) = {i : eval(bexp, S,BV ∪ i)}
eval((bnd1, . . . , bndn), S,BV) = (eval(bnd1, S,BV), . . . , eval(bndn, S,BV))

We now define eval for array expressions aexp, and access of array element aexp iexp. The
evaluation of such expressions is done in two steps. First, a function eval′ is applied to aexp.
This function is similar to eval for non-array expressions, replacing program variables with their
current values and simplifying the resulting expressions. If the result is a closed normal form then
the evaluation proceeds as follows: for array expressions that are to be fully evaluated, a function
tabulate allocates memory and evaluates all array elements. Applied array expressions aexp iexp,
on the other hand, are evaluated in a lazy fashion by the eval elem function, which evaluates and
returns exactly the indexed array element.

As mentioned, arrays are semantically pairs (f, b) where f is a function defining the array
elements and b is a bound. We define fun(f, b) = f , and bound(f, b) = b. Below we extend these
functions to general array expressions by defining instances of eval for them. These instances are
used in the definitions of tabulate, and eval elem.

The evaluated arrays produced by tabulate are pairs (t, b), where t is a table defining the
function. We define tab(t, b) = t in this case. Table elements are accessed with array notation,
viz. t[i] for element i. Array variables a always hold fully evaluated arrays: thus, S(a) = (t, b) for
some table t, and bound b. Fully evaluated arrays a are ?-strict, that is: a[?] =?.

In addition to the previously introduced functions we assume that the following functions are
available:

• alloc(bnd, τ): allocates memory for the table of an array with finite bound bnd, and el-
ements of type τ all initialized to the undefined value “?”. (We also assume a function
target type(aexp) that returns the type of the elements in the array defined by aexp.)

• B(exp, i, Y): derives the bound for forall i→ exp in a context where Y is the current set of
variables that are bound in some enclosing variable-binding construct (like an outer forall).
B(exp, i, Y) is defined in Section 9.

19

We now define eval′:

eval′(a, S,BV) = S(a)
eval′([exp : i in bnd], S,BV) = [eval(exp, S,BV ∪ {i}) : i in eval(bnd, S,BV)]
eval′(forall i→ exp, S,BV) = forall i→ eval(exp, S,BV ∪ {i})

eval′(aexp | bnd, S,BV) = (eval(fun(aexp), S,BV), eval(bound(aexp) u bnd, S,BV)
eval′([iexp.. : exp1, . . . , expn], S,BV) = [eval(iexp, S,BV).. : eval(exp1, S,BV), . . . , eval(expn, S,BV)]
eval′([..iexp : exp1, . . . , expn], S,BV) = [..eval(iexp, S,BV) : eval(exp1, S,BV), . . . , eval(expn, S,BV)]

eval′([exp1, . . . , expn], S,BV) = [eval(exp1, S,BV), . . . , eval(expn, S,BV)]
eval′([iexp1 : exp1, . . . , iexpn : expn], S,BV) = [eval(iexp1, S,BV) : eval(exp1, S,BV), . . . , eval(iexpn, S,BV) : eval(expn, S,BV)]

Next we define eval for bound(aexpr):

eval(bound(a), S,BV) = bound(S(a))
eval(bound([exp : i in bnd]), S,BV) = eval(bnd, S,BV)
eval(bound(forall i→ exp), S,BV) = B(eval(exp, S,BV ∪ i), i, ∅)

eval(bound(aexp | bnd), S,BV) = eval(bound(aexpr) u bnd, S,BV)
eval(bound([iexp.. : exp1, . . . , expn]), S,BV) = let i = eval(iexp, S,BV) in i..(i+ n− 1)
eval(bound([..iexp : exp1, . . . , expn]), S,BV) = let i = eval(iexp, S,BV) in (i− n+ 1)..i

eval(bound([exp1, . . . , expn]), S,BV) = 0..(n− 1)
eval(bound([iexp1 : exp1, . . . , iexpn : expn]), S,BV) = {eval(iexp1, S,BV), . . . , eval(iexpn, S,BV)}

Then we define eval for fun(aexpr):

eval(fun(a), S,BV) = λi.(tab(a)[i])
eval(fun([exp : i in bnd]), S,BV) = λi.eval(exp, S,BV ∪ {i})
eval(fun(forall i→ exp), S,BV) = λi.eval(exp, S,BV ∪ {i})

eval(fun(aexp | bnd), S,BV) = eval(fun(aexp), S,BV)
eval(fun([iexp.. : exp1, . . . , expn]), S,BV) = let i = eval(iexp, S,BV) in

{ k 7→ eval(expk, S,BV) | i ≤ k ≤ i+ n− 1 }
eval(fun([..iexp : exp1, . . . , expn]), S,BV) = let i = eval(iexp, S,BV) in

{ k 7→ eval(expk, S,BV) | i− n+ 1 ≤ k ≤ i }
eval(fun([exp1, . . . , expn]), S,BV) = { k 7→ eval(expk, S,BV) | 0 ≤ k ≤ n− 1 }

eval(fun([iexp1 : exp1, . . . , iexpn : expn]), S,BV) = { eval(iexpk, S,BV) 7→ eval(expk, S,BV) | 1 ≤ k ≤ n }

We are now in a position where we can define eval elem, and tabulate. The semantics for this
part is defined using a different, more informal style, where the evaluation is expressed by a kind
of pseudocode. This pseudocode is expressed in what could be a high-level intermediate format.
In tabulate we use the notation set(bnd) for the set of indices defined by the bound bnd:

eval elem(aexp iexp, S,BV) =
b = eval(bound(aexp), S,BV);
f = eval(fun(aexp), S,BV);
i = eval(iexp, S,BV);
if not member(i, b) then ERROR/return ?6;
return f(i)

tabulate(aexp, S,BV) =
b = eval(bound(aexp), S,BV);
f = eval(fun(aexp), S,BV);
if not finite(b) then ERROR;
t = alloc(b, target type(aexp));
t[ik] = f(ik), k = 1, . . . , n, where set(b) = {i1, . . . , in};
return(t, b)

6? is returned when inside the bounds of an enclosing forall-expression.

20

Now we define eval for array expressions, both for expressions applied to an index and isolated:

eval(aexp iexp, S,BV) = let app e = eval′(aexp, S,BV) eval(iexp, S,BV) in
eval elem(app e, S,BV), app e closed normal form
app e otherwise

eval(aexp, S,BV) = let ae = eval′(aexp, S,BV) in
tabulate(ae, S,BV), ae closed normal form
ae otherwise

We now give semantics for the collective functions reduce, and scan, using the same kind of
pseudo-code as for eval elem, and tabulate:

eval(reduce(bfun, aexp), S,BV) =
a = eval(aexp, S,BV);
b = bound(a);
if not(finite(b)) then ERROR;
s = size(b);
if s = 0 then ERROR;
e = enum(b);
i = 0;
while not(isDef(a[e[i]])) do
i = i + 1;
if i = s then ERROR;

acc = a[e[i]];
i = i + 1;
while i < s do
if isDef(a[e[i]]) then acc = bfun(acc, a[e[i]]);
i = i + 1;

return acc

Reduce is a function that comes in many varieties. The version defined in HERO-ML takes
two arguments: an array, and a binary function that is successively applied over the array, in the
order defined by the enumeration. It requires that the array is finite, and has at least one defined
element: thus reducing over the empty array yields an error, as well as for an array where all
elements are undefined.

This version of reduce applies the binary function sequentially. A parallel implementation
could instead apply the function in a balanced tree order. This can cause discrepancies, if this
function is not associative. The current version of the HERO-ML semantics allows this.

eval(scan(bfun, aexp), S,BV) =
a = eval(aexp, S,BV);
b = bound(a);
if not(finite(b)) then ERROR;
s = size(b);
e = enum(b);
i = 0;
while not(isDef(a[e[i]])) do
i = i + 1;
if i = s then ERROR;

t = alloc(b, target type(a));
t[e[i]] = a[e[i]];
i′ = i;
i = i + 1;
while i < s do
if isDef(a[e[i]]) then

21

t E A S D P ×
E E A S D P ×
A A A A A A
S S D P S/P
D D P −
P P P
× ×

u E A S D P ×
E E E E E E E
A A S D P ×
S S S S S
D D S −
P P S/P
× ×

Table 1: Result “types” of join (t), and meet (u) as a function of the argument “types” (adapted
from [5]). E = empty, A = all, S = sparse, D = dense, P = predicate, × = product bound.
“S/P” in the table for join means that the result is sparse if the product bound is finite, and a
predicate otherwise, and “−” that the combination is not allowed.

t[e[i]] = bfun(t[e[i′]], a[e[i]]);
i′ = i;

i = i + 1;
return(t, b)

Scan is like reduce, but rather than returning a single value (the “sum”) it returns an array with
the same bound as the input array, defined in the same locations, where each element holds the
“partial sum” up to and including this location in the order given by the enumeration. Contrary
to reduce, applying scan to the empty array is considered legal and returns the empty array.

Foreach masked array update: we give semantics for the foreach statement as pseudocode that
describes how the store S is updated when the statement is executed.

foreach i in bnd do a iexp1 · · · iexpn = exp

Initial store S:

e = eval(exp, S, {i});
b = eval(bnd, S, ∅) u eval(bound(forall i → e));
if not(finite(b)) then ERROR;
let {j1, . . . , jk} = b in
tmp = alloc(b, target type(a));
for l = 1 to k
ilm = eval(iexpm, S[i 7→ jl], ∅) for m ∈ {1, . . . , n};
if ilm /∈ bound(a[il1] · · · [ilm−1]) for some m ∈ {1, . . . , n} then ERROR;
tmp[l] = eval(exp, S[i 7→ jl], ∅);

for l = 1 to k
if isDef(tmp[l]) then a[il1] · · · [iln] = tmp[l];

Final store: S with updated array elements according to above.
The use of the temporary array tmp is necessitated by the sequential nature of the pseudocode.

Without it there would be a risk that some elements of a are overwritten before used, violating
the concurrent semantics of the foreach statement.

8 Semantics for Join and Meet

We now define join (t), and meet (u) for the different combinations of bounds that are possible.
An overview is given in Fig. 1. Both operators are symmetric: thus, the tables are triangular.
Both bounds must have the same dimensionality: consequently, join and meet of a dense bound
(interval) and a product bound is not possible, since a dense bound is one-dimensional whereas a
product bound always is at least two-dimensional.

In the following b stands for any bound, s for a sparse bound, { i | p(i) } for a predicate bound,
l..u for a dense bound, and (b1, . . . , bn) for an n-dimensional product bound. Sparse bounds and

22

predicate bounds are considered to be sets, and the set operators ∪, ∩ can be applied to them. As
in Section 7, set(b) stands for the set defined by b. For finite sets s, inf(s) is the lexicographically
smallest element of s and sup(s) the largest, respectively. Now, (3) - (11) defines t:

empty t b = b (3)

all t b = all (4)

{ i | p(i) } t b = { i | p(i) ∨ i ∈ set(b) }, b 6= all, empty (5)

s t s′ = s ∪ s′ (6)

s t l..u = min(inf(s), l)..max(sup(s), u) (7)

s t b = s ∪ set(b), b finite product bound (8)

s t b = { i | i ∈ s ∨ i ∈ set(b) }, b infinite product bound (9)

(b1, . . . , bn) t (b′1, . . . , b
′
n) = (b1 t b′1, . . . , bn t b′n) (10)

l..u t l′..u′ = min(l, l′)..max(u, u′) (11)

Similarly, (12) - (18) defines u:

empty u b = empty (12)

all u b = b (13)

s u b = s ∩ set(b), b 6= all, empty (14)

{ i | p(i) } u b = set({ i | p(i) }) ∩ set(b), b finite, b 6= empty (15)

{ i | p(i) } u b = { i | p(i) ∧ i ∈ set(b) }, b infinite, b 6= all (16)

(b1, . . . , bn) u (b′1, . . . , b
′
n) = (b1 u b′1, . . . , bn u b′n) (17)

l..u u l′..u′ = max(l, l′)..min(u, u′) (18)

A dense bound l..u equals empty if l > u.

9 How to Derive Bounds for Forall-expressions

The purpose of forall-expressions is to provide a convenient, and generic syntax for arrays, which
is close to mathematical notation. It builds on the fact that arrays really are partial functions
from indices to array values. In higher-order functional languages functions can be defined through
λ-abstractions λi.e, and the forall-expression forall i→ e is similar except that it defines an array
whose bound is derived from the syntax of e. The programmer is thus relieved from the task
of explicitly defining the bounds. The implicit bounds also help making array definitions more
reusable across different kinds of bounds.

The guiding principle is that the bound for forall i → e should safely overapproximate the
domain of λi.e, that is: dom(λi.e) ⊆ bound(forall i → e) where dom(f) = {x | f(x) 6=? }. The
rationale is that if we view the function λi.e as the “ideal” array then, if bound(forall i → e)
is finite, functions over λi.e can instead be computed over forall i → e by first filtering out all
appearances of “?”. Examples are the reduce and scan functions as defined in Section 7.

The derivation of bounds is basically a simple value analysis by abstract interpretation [3, 9].
However, contrary to a traditional static program analysis the derivation of bounds is done at run-
time, every time a forall-expression is evaluated. Also, since arrays are not defined recursively,
no widening is needed.

The bound for forall i→ e is now given by a function B(e, i, Y) where Y is a set of variables
that are bound in enclosing expressions. On top level, Y = ∅. We define B(e, i, Y) recursively,
over the structure of e. We assume that e is a normal form (that is: all program variables have
been replaced by their current values, and the resulting expression has been evaluated as far as
possible). We also assume that e does not contain any free variables (implying, for instance,

23

that all enclosing array expressions have their array indices instantiated). Finally we assume, for
simplicity, that all bound variables are distinct.

B(e, i, Y) is defined by cases below. The cases are divided into three parts: first there are the
“general” cases (19) – (31) that should be supported by any kind of abstract array, then there
are the cases that concern multi-dimensional arrays, and finally there is a parallel read operation
called shift, or translation, where elements are uniformly read from a constant offset given by a
vector.

B(c, i, Y) = all (c constant 6= ?) (19)

B(?, i, Y) = empty (20)

B(y, i, Y) = all y ∈ {i} ∪ Y (21)

B(f(e1, . . . , en), i, Y) = B(e1, i, Y) u · · · uB(en, i, Y) (f ?-strict) (22)

B(if (e1, e2, e3), i, Y) = (Btrue(e1, i, Y) uB(e2, i, Y)) t
(Bfalse(e1, i, Y) uB(e3, i, Y)) (23)

B(e1 || e2, i, Y) = Btrue(e1, i, Y) t (Bfalse(e1, i, Y) uB(e2, i, Y)) (24)

B(e1 && e2, i, Y) = Bfalse(e1, i, Y) t (Btrue(e1, i, Y) uB(e2, i, Y)) (25)

B(isDef(e), i, Y) = all (26)

B(forall j → e, i, Y) = B(e, i, {j} ∪ Y) (27)

B(e[i], i, Y) = bound(e), FV (e) = ∅ (28)

B(e[i][e1] · · · [en], i, Y) = bound(e), FV (e) = ∅ (29)

B(a[e], i, Y) = B(e, i, Y), e 6= i,FV (e) ⊆ Y (30)

FV (e) stands for the set of free variables in e. For cases not explicitly covered, where B(e, i, Y)
still should be defined, it holds that

B(e, i, Y) = all . (31)

Btrue, and Bfalse are defined as follows:

Btrue(false, i, Y) = empty (32)

Bfalse(true, i, Y) = empty (33)

Btrue(if (e1, e2, e3), i, Y) = (Btrue(e1, i, Y) uBtrue(e2, i, Y)) t
(Bfalse(e1, i, Y) uBtrue(e3, i, Y)) (34)

Bfalse(if (e1, e2, e3), i, Y) = (Btrue(e1, i, Y) uBfalse(e2, i, Y)) t
(Bfalse(e1, i, Y) uBfalse(e3, i, Y)) (35)

Btrue(e1 && e2, i, Y) = Btrue(e1, i, Y) uBtrue(e2, i, Y) (36)

Btrue(e1 || e2, i, Y) = Btrue(e1, i, Y) t (Bfalse(e1, i, Y) uBtrue(e2, i, Y) (37)

Bfalse(e1 && e2, i, Y) = Bfalse(e1, i, Y) t (Btrue(e1, i, Y) uBfalse(e2, i, Y) (38)

Bfalse(e1 || e2, i, Y) = Bfalse(e1, i, Y) uBfalse(e2, i, Y) (39)

Btrue(e, i, Y) = Bfalse(e, i, Y) = B(e, i, Y) for all other expressions e (40)

Let us motivate these definitions informally. (19) is appropriate since the elements of forall i→
c all will equal c, and thus should be defined for all indices i unless c = ? in which case the elements
should be nowhere defined as stated by (20). The elements of forall i→ i will all equal i and should
thus also be defined everywhere, which motivates the case in (21) where y = i. The other case for
(21), y ∈ Y , is motivated since the variables in Y are bound in enclosing forall-expressions and
thus should be considered constant, and thus everywhere defined across each individual evaluation.

(22) is the “elementwise application” case. It is motivated by the following: since f is strict,
it holds that f(x1, . . . , xn) = ? as soon as some xj = ?. Thus, in the rule, whenever i is outside
the bounds of some ej then f(e1, . . . , en) = ?. It follows that the “intersection” of the bounds for
e1, . . . , en will always contain all argument values for i such that f(e1, . . . , en) evaluates to a value

24

distinct from ?. (23) is motivated by a somewhat similar argument: the if function is strict in its
first argument (the condition), and thus if (t1, t2, t3) is defined only when t1 is defined and some
of t2, t3 are. In addition the function is “conditionally strict” in its arguments t2 and t3 provided
that t1 evaluates to true or false, respectively. The somewhat complex definition, with functions
Bfalse, Btrue is exploiting this conditional strictness to obtain higher precision in the computed
bound. Similar arguments motivate (24) and (25). (26) is a consequence of the fact that isDef is
defined (either true, or false) everywhere.

(27) keeps track of bound variables when descending into an expression. It works together
with (21).

e[i] can be different from ? only when i ∈ bound(e), which motivates (28). (29) is an extension
of (28) to the case of nested array application. (30), finally, is sound since evaluated arrays are
?-strict: therefore, whenever e evaluates to ? we will have a[e] = a[?] = ?. Thus, a[e] can be
defined only when e is.

The restriction on the set of free variables (FV) in some of the rules serves the purpose of
delaying the calculation of bounds until enough is known to calculate a non-parametric bound.
This means that possible free variables in the expressions must be instantiated first, in order to
make some of the rules applicable. These free variables can, for instance, be formal arguments
to some function containing forall-expressions. In such a case the calculation of bounds may
have to be deferred until run-time, when the function is called and the formal arguments are
instantiated to actual values.

9.1 Multi-Dimensional Bounds

Multi-dimensional arrays, such as matrices and tensors, are extremely important in computational
applications whether it’s signal or image processing, machine learning, or numerical solving of
differential equations. Different data parallel and array languages have therefore developed a
multitude of constructs to express operations on matrices and arrays such as selection of row
or column vector from a matrix, reduction over all row/column vectors, and other operations.
These constructs are however often a bit ad-hoc, often lacking generality, and the semantics can
be somewhat unclear since often no precise, formal semantics is given. An important motivation
for forall-expressions is to provide a uniform, general, and semantically well-defined syntax to
express various operations on higher-dimensional arrays. Below are some examples7:

• forall i-> A[i,c] selection of column c from matrix A

• forall j -> A[r,j] selection of row r from matrix A

• forall i -> A[i,i] selection of main diagonal from matrix A

• forall (i,j) -> A[j,i] transpose of matrix A

• forall i -> (forall j -> A[i,j]) conversion of matrix A into a nested array of arrays
(row vectors)

• forall i -> reduce(+,(forall j -> A[i,j])) array of the sums of all rows in matrix A

However, if this is to be useful then these constructs must be given reasonably tight bounds. For
instance, for matrix transpose the bounds in the two dimensions should be “flipped”, and for
the main diagonal the matrix bounds in the two dimensions should be intersected. Furthermore
this should work for conventional matrix bounds as well as sparse bounds. Arrays with larger
dimensionality than two should also be handled, since such arrays can turn up in applications
such as, for instance, neural network processing.

First, we extend the syntax of forall-expressions to take tuples, representing n-dimensional
vectors, as arguments:

forall (i1, . . . , in)→ e

7There should really be some figures illustrating these examples. I might add some in some later version.

25

We have to modify the rules to take into account that we now have tuples of bound variables. For
instance, 27 will have a tuple version that looks like this:

B(forall (j1, . . . , jm)→ e, (i1, . . . , in), Y) = B(e, (i1, . . . , in), {j1, . . . , jm} ∪ Y) (27.1)

(From now on we will denote index variables by x rather than i, j.)
We now add a case to the definition of B(e[e1, . . . , em], (x1, . . . , xn), Y) where for some j’s hold

that ej = xi for some i. bound(e) will then constrain the xi’s. For simplicity we first consider the
case where bound(e) is a product bound (b1, . . . , bm): then bj will directly constrain ej , and thus
also xi.

9.1.1 Multi-Dimensional Product Bounds

As an example, consider forall (x1, x2, x3) → a[x2, c, x3, x3] where bound(a) = (b1, b2, b3, b4).
This is a three-dimensional array, defined by selecting a two-dimensional subarray of the four-
dimensional array a which is then replicated in the x1-direction. What should its bound be?
Obviously x2 should be constrained by b1, and x3 by both b3 and b4. x1, on the other hand,
should be left unconstrained. We obtain the product bound (all , b1, b3 u b4).

This bound can be tightened. It might be that c /∈ b2. Then the vector (x2, c, x3, x3) will be
outside the bound of a no matter what values are given to x2 and x3. So in this case, empty
is a valid bound. If c is a constant then this check can be done at compile-time: otherwise the
derivation of the bound will have to be deferred to when c becomes known.

We now define B(e[e1, . . . , em], (x1, . . . , xn), Y). We consider the case where, for each i ∈
{1, . . . ,m}, either ei = xj for some j, ei = ci for some constant ci, or ei is a general term such that
FV (ei) ⊆ {x1, . . . , xn}∪Y . We characterize (e1, . . . , em) by (1) a partial function p : {1, . . . ,m} →
{1, . . . , n} such that ei = xp(i) for i ∈ dom(p), and (2) a partial function C : {1, . . . ,m} → Z such
that ei = C(i) for i ∈ dom(C). Here Z is the set of integers, and we demand that dom(p) ∩
dom(C) = ∅. We define a function “bproj p,C” that transforms a product bound (b1, . . . , bm)
according to the following:

bproj p,C(b1, . . . , bm) =

{
(b′1, . . . , b

′
n) if C(i) ∈ bi for all i ∈ dom(C)

empty otherwise

where b′j = up(i)=jbi for j ∈ {1, . . . , n}. up(i)=jbi equals all if there is no i such that p(i) = j. We
now define

B(e[e1, . . . , em], (x1, . . . , xn), Y) = bproj p,C(bound(e)) (41)

when
FV (bound(e)) = ∅,FV (e1, . . . , em) ⊆ {x1, . . . , xn} ∪ Y)

For our example forall (x1, x2, x3) → a[x2, c, x3, x3] above it holds that p(1) = 2, and p(3) =
p(4) = 3. We thus have dom(p) = {1, 3, 4}. For C holds that dom(C) = {2}, and C(2) = c. If
bound(a) = (b1, . . . , b4) then the rule set for the B function above will yield

B(a[x2, c, x3, x3], (x1, x2, x3), ∅) = if c ∈ b2 then (all , b1, b3 u b4) else empty

9.1.2 Multi-Dimensional Sparse Bounds

We now turn to the case that e has a sparse m-dimensional bound. This bound is an explicit
representation of a general finite set, and thus B(e[e1, . . . , em], (x1, . . . , xn), Y) ought to be a
sparse n-dimensional bound. At first sight it seems straightforward to define B for this kind of
bound. For instance the following should hold for selecting the main diagonal, and c’th column,
respectively, from the sparse matrix A:

B(A[x, x], x, ∅) = { v | (v, v) ∈ bound(A) } selection of main diagonal
B(A[x, c], x, ∅) = { v | (v, c) ∈ bound(A) } selection of column c

26

Both these are sparse, one-dimensional bounds.
Let’s now turn to our running example. If bound(a) is sparse then we ought to have the

following:

B(a[x2, c, x3, x3], (x1, x2, x3), ∅) =
{ (v1, v2, v3) | ∃(u1, u2, u3, u4) ∈ bound(a) where v2 = u1 ∧ c = u2 ∧ v3 = u3 ∧ v3 = u4 }

Indeed this is correct in terms of sets. However v1 is not constrained, so this set is not finite!
Obviously, this sparse bound cannot be represented by a finite set representation right away.

The problem can be dealt with in the following way. The bound can be seen as a finite set of
two-dimensional vectors that are embedded into a three-dimensional space. Thus, the bound can
be finitely represented by the set of 2D-vectors plus information identifying in which 2D-subspace
of the 3D-space that the set resides.

To simplify the notation we use the fact that a tuple (or vector) (v1, . . . , vn) really is a function
from {1, . . . , n} to some value range. A lower-dimensional vector embedded in this n-dimensional
space is then a function from some subset of {1, . . . , n}, where the embedded dimensions are given
by this subset. We can use the tuple notation (vi | i ∈ dim), where dim is the set of dimensions
for the subspace. In our running example we have dim = {2, 3}, and the elements in the set of
2D-vectors will be indexed as (v2, v3).

We now define a sparse n-dimensional bound as a triple

(S, dim, n)

where S is a finite set of |dim|-dimensional vectors (vi | i ∈ dim), dim ⊆ {1, . . . , n} is the set
of dimensions in n-space in which the vectors in S are embedded, and n is the dimensionality of
the bound. This bound is a finite representation of a set of n-dimensional vectors v, where there
exists a |dim|-dimensional vector (ui | i ∈ dim) in S such that vi = ui for all i ∈ dim. Obviously
this set is infinite unless dim = {1, . . . , n}, in which case the bound is finite and corresponds to a
sparse n-dimensional bound as defined earlier.

Multi-dimensional sparse bounds can be seen as relational databases [8]. Such a database is
essentially a set of records, where each record has a number of attributes. For a sparse bound the
attributes are then the dimensions in which the vectors are embedded, and the records are the
embedded vectors.

We now extend the bproj function to sparse bounds (S, dim,m):

bproj p,C,n(S, dim,m) = (S′, im(p), n)

where

S′ = {(vj | j ∈ im(p)) | ∃(ui | i ∈ dim) ∈ S.∀i ∈ dim.(i ∈ dom(p) =⇒ ui = vp(i) ∧
i ∈ dom(C) =⇒ ui = C(i))}

Here, im(p) stands for the image of p, that is: { p(i) | i ∈ dom(p) }. We require that im(p) ⊆
{1, . . . , n}. n is typically given by the context of the bound, for instance if it is the bound for
an n-dimensional forall-expression. We obtain the following version of (41), for sparse bounds
bound(e):

B(e[e1, . . . , em], (x1, . . . , xn), Y) = bproj p,C,n(bound(e)) (42)

9.1.3 Join and Meet for Multi-Dimensional Sparse Bounds

In addition to the instance of the B function above, the other operations on bounds must be
defined for sparse bounds. Most cases in Section 8 will still work out-of-the-box, but we need to
define new versions of join and meet (t, u) for the following cases:

• both arguments are sparse multidimensional bounds, and

• one argument is a sparse multidimensional bound, and the other bound is a product bound.

27

These cases correspond to (6), (9), and (14) in Section 8
We now define join and meet for the first case. We first extend the set function to sparse

bounds, mapping such a bound (S, dim, n) to the subset of Zn that it defines:

set(S, dim, n) = { v ∈ Zn | ∃(si | i ∈ dim) ∈ S.∀i ∈ dim.vi = si } (43)

From the definition follows that set has the following monotonicity properties:

S ⊆ S′ =⇒ set(S, dim, n) ⊆ set(S′, dim, n) (44)

dim ⊆ dim′ =⇒ set(S, dim′, n) ⊆ set(S, dim, n) (45)

We want join to have the following property, for sparse bounds S1 = (S1, dim1, n), S2 = (S2, dim2, n):

set(S1) ∪ set(S2) ⊆ set(S1 t S2) (46)

This property says that join will never underestimate the sets of Zn-vectors defined by its argu-
ments. We now define join as follows:

(S1, dim1, n) t (S2, dim2, n) = (St, dimt, n) (47)

where
dimt = dim1 ∩ dim2

St = { (ui | i ∈ dimt) | u ∈ S1 ∪ S2 }
(48)

It follows from (44), (45) that join has the desired property (46).
We now turn to meet. Similar to join (46), it should provide a safe overestimation of the

intersection of the sets for its arguments:

set(S1) ∩ set(S2) ⊆ set(S1 u S2) (49)

We now have the following:

v ∈ set(S1, dim1, n) ∩ set(S2, dim2, n)

⇐⇒ v ∈ set(S1, dim1, n) ∧ v ∈ set(S2, dim2, n)

⇐⇒ (by definition of set)

⇐⇒ (∃s ∈ S1.∀i ∈ dim1.vi = si) ∧ (∃s′ ∈ S2.∀i ∈ dim2.vi = s′i)

⇐⇒ (by simple rearrangement of the formula)

⇐⇒ ∃s ∈ S1.∃s′ ∈ S2.(∀i ∈ dim1.vi = si ∧ ∀i ∈ dim2.vi = s′i)

⇐⇒ ∃s ∈ S1.∃s′ ∈ S2.(∀i ∈ dim1 ∪ dim2.vi = merge(s, s′)i) (50)

where

merge(s, s′)i =

{
si if i ∈ dim1

s′i if i ∈ dim2

merge(s, s′) is well-defined iff si = s′i for all i ∈ dim1 ∩ dim2. We now define meet, viz.

(S1, dim1, n) u (S2, dim2, n) = (Su, dimu, n) (51)

where
dimu = dim1 ∪ dim2

Su = {merge(s, s′) | s ∈ S1, s
′ ∈ S2 where si = s′i for all i ∈ dim1 ∩ dim2 }

(52)

It now follows from (50), (51), and (52) that v ∈ set(S1, dim1, n) u (S2, dim2, n) precisely when
v ∈ set(S1, dim1, n) ∩ set(S2, dim2, n), that is: (49) is fulfilled and meet furthermore provides a
tight bound.

28

We finally define join and meet between a sparse, n-dimensional bound (S, dim, n), and an
n-dimensional product bound (b1, . . . , bn). Let ◦ be any of t, u. Then:

(S, dim, n) ◦ (b1, . . . , bn) = (b′1 ◦ b1, . . . , b′n ◦ bn) (53)

where

b′i =

{
all if i /∈ dim
({x | ∃s ∈ S.x = si }, {1}, 1) if i ∈ dim

Thus, b′i is the projection of S in dimension i. It is not hard to show that (b′1, . . . , b
′
n) provides a

safe approximation of (S, dim, n).

9.1.4 Multi-Dimensional Predicate Bounds

Predicate bounds are in a way similar to sparse bounds, but can be represented much more directly
by executable functions since they are not finite. This simplifies the derivation of multi-dimensional
predicate bounds considerably. For our running example forall(x1, x2, x3) → a[x2, c, x3, x3], if b
is a predicate bound then we obtain

B(a[x2, c, x3, x3], (x1, x2, x3), ∅) = {(x1, x2, x3) : member((x2, c, x3, x3), bound(a))}

It is straightforward to give a general definition of the B function for predicate bounds:

B(e[e1, . . . , em], (x1, . . . , xn), Y) = {(x1, . . . , xn) : member((e1, . . . , em), bound(e))} (54)

(54) is generic: it works for general index expressions ei. In particular this includes the extended
index expressions considered in Section 9.2 below.

9.2 Bounds for a Class of Linearly Shifted Arrays

We now extend the class of expressions, where the “B” function can give a tight bound, to
expressions e[e1, . . . , em], where ei = si · xp(i) + oi, with si 6= 0 and oi ∈ Z whenever i ∈ dom(p).
Note that this includes the previously considered expressions ei = xp(i) whenever si = 1, and
oi = 0. We will refer to si as a stride, oi as an offset, and to arrays accessed with index expressions
as above as stride-shifted arrays.

Here are three examples of what the added expressiveness can be used for:

• forall i -> A[-i] reversal of A

• forall (i,j) -> A[i-1,j-1] shift of matrix A with vector (1,1)

• forall i -> (A[2*i] + A[2*i+1]) addition of of the neighboring evenly- and oddly-
indexed elements of A

All these are examples of get communication, or parallel read, where an imaginary processor at
coordinate i (or i,j) reads an element of A from position -i (or i-1,j-1, or 2*i and 2*i+1). Such
communication is common in data parallel algorithms: in particular shift operations are common
and they often have efficient hardware implementations. The general format for parallel read is
forall i -> A[g(i)], where the g(i), for g(i) ∈ bound(A), constitute the source addresses of
the parallel read.

How can tight bounds be found for arrays created by parallel read? There is no general answer
– the problem is undecidable in general – but some clues can be found by studying the domains
of the corresponding functions. For functions A and g where g is injective, and thus has a left
inverse g−1 : im(g)→ dom(g), we have:

dom(λi.A(g(i))) = { i | g(i) ∈ dom(A) }
= { i | g−1(g(i)) ∈ g−1(dom(A)) }
= { i | i ∈ g−1(dom(A)) }
= g−1(dom(A))

29

This fact can often be used to find functions that translate bounds according to g−1. For the
parallel read considered here, we have a function g(x) = s ·x+o, and thus g−1(y) = (y−o)/s. We
now define a function “ss” (“stride-shift”) that takes a stride s, an offset o, and a one-dimensional
bound b, and returns a bound representing g−1(b):

ss(all , s, o) = all (55)

ss(empty , s, o) = empty (56)

ss(l..u, s, o) = d(l − o)/se..b(u− o)/sc, s > 0 (dense bound 1) (57)

ss(l..u, s, o) = d(u− o)/se..b(l − o)/sc, s < 0 (dense bound 2) (58)

ss({i1, . . . , in}, s, o) = { (ij − o)/s | s divides ij − o } (finite sparse 1D bound) (59)

ss({i : p(i)}, s, o) = {i : p(s · i+ o)} (predicate bound) (60)

9.2.1 Bounds for One-dimensional Shifted Arrays

We now define more precise bounds for stride-shifted one-dimensional arrays:

B(e[s · i+ o], i, Y) = ss(bound(e), s, o), FV (e) = ∅ (61)

This rule supersedes (28), which becomes a special case with s = 1 and o = 0. A similar rule can
be formulated for nested arrays, which in the same way supersedes (29).

9.2.2 Multi-dimensional Product Bounds

We now extend the bounds for shifted arrays to the multi-dimensional case, by extending the B
function to expressions e[e1, . . . , em] where ei = si · xp(i) + oi for i ∈ dom(p). We first treat the
case where e has a product bound (b1, . . . , bm), and we define an extended version bproj p,C,s,o

of the “bproj ” function in Section 9.1.1, with additional parameters s = (si | i ∈ dom(p)) and
o = (oi | i ∈ dom(p)), respectively, that define the strides and offsets si, oi for the occurrences of
xp(i):

bproj p,C,s,o(b1, . . . , bm) =

{
(b′1, . . . , b

′
n) if C(i) ∈ bi for all i ∈ dom(C)

empty otherwise

where b′j = up(i)=jss(bi, si, oi) for j ∈ {1, . . . , n}. The new version of bproj is now used to define
the “B” function for multi-dimensional product bounds:

B(e[e1, . . . , em], (x1, . . . , xn), Y) = bproj p,C,s,o(bound(e)) (62)

when FV (bound(e)) = ∅,FV (e1, . . . , em) ⊆ {x1, . . . , xn} ∪ Y . This definition supersedes (41).

9.2.3 Sparse Multi-Dimensional Bounds

We now define a version of bproj for sparse multi-dimensional bounds:

bproj p,C,s,o,n(S, dim,m) = (S′, im(p), n)

where

S′ = {(vj | j ∈ im(p)) | ∃(ui | i ∈ dim) ∈ S.∀i ∈ dim.(i ∈ dom(p) =⇒ ui = si · vp(i) + oi ∧
i ∈ dom(C) =⇒ ui = C(i))}

We obtain the following version of (42), for stride-shifted arrays with sparse bounds bound(e):

B(e[e1, . . . , em], (x1, . . . , xn), Y) = bproj p,C,s,o,n(bound(e)) (63)

This definition supersedes (42).

30

9.2.4 Detecting Index Expressions for Stride-Shifted Arrays

In this section we consider index expressions that are on the format s · x + o. However there
are many other index expressions that are semantically equal, but have different syntax. Näıve
pattern-matching on the syntax will miss many such cases: for instance the expression−2·x+5+3·x
has the wrong syntax, and will not be recognized.

HERO-ML therefore has a set of transformations that transform index expressions into the
prescribed format, if possible, in order to detect semantically equivalent index expressions. For
instance the expression

A[−3 · i+ 27 + 2 · i+ (14− 14) · i · i]

will be transformed into
A[−i+ 27],

which is on the prescribed format. The exact rules how to transform index expressions are given
in Appendix A.

10 Possible Future Extensions of HERO-ML

In this section we give a “wish list” for a number of possible future extensions of HERO-ML,
including simple syntactic conveniences as well as more substantial additions.

10.1 User-Defined Functions and Procedures

HERO-ML in its current form is an experimental language, for research purposes, rather than a
production language. The focus is thus on abstract arrays rather than standard language con-
structs. Therefore the current version does not have user-defined functions and procedures. They
are however straightforward to add, and a full-fledged production version of HERO-ML should
have them.

10.2 Elemental Overloading, and Promotion of Scalars

Many array languages offer a syntactic convenience known as elemental intrinsics overloading.
This refers to the overloading of “scalar” functions or operators to work also elementwise on
arrays, for instance to let a + b stand for the elementwise addition of the arrays a and b. A
related syntax is to “promote” scalars into constant-valued arrays when the scalar appears in a
position where an array is expected. this kind of syntax is often highly appreciated, but is mostly
offered only for a restricted set of operators in an ad-hoc fashion.

In a language with forall-expressions and explicit typing, general rules can be given for how
to resolve this kind of overloading. Here are some examples, where “+” is addition of floats, a and
b are abstract arrays with elements of type float, and source is an abstract array with elements
of the same type as the index type for a:

• a + b → forall i -> a[i] + b[i] (elemental overloading)

• a + 1.0 → forall i -> a[i] + 1.0 (elemental overloading with constant)

• a[source] → forall i -> a[source[i]] (overloading of get communication)

• 1.0 | 1..10 → (forall i -> 1.0) | 1..10 (promotion of 1.0, followed by explicit
restriction, to create a constant array with bound 1..10)

Some of this can be done in Haskell, for operators and functions belonging to some predefined
class [6]. But there are ways to do this for operators and functions not necessarily restricted to
some class or similar. In [11, 12] it is shown how to do this systematically for explicitly typed
languages, formulating the problem as a combined type inference and code transformation system
that resolves the overloading during th type checking.

31

10.3 Array Syntax for Selection of Substructures

Another popular feature in array languages is to offer convenient notation for selecting substruc-
tures. For instance a[i,*] might refer to the i’th row of the matrix a, and a[*,k] to the k’th
column. This syntactic sugar can easily be resolved using forall:

• a[i,*] → forall k -> a[i,k] (selection of row)

• a[*,k] → forall i -> a[i,k] (selection of column)

10.4 Other Syntactical Conveniences

Many other syntactical conveniences are possible. For instance we might let

foreach i do x[iexp] = exp

stand for

foreach i in all do x[iexp] = exp

Such simple syntactic short-hand forms can increase the readability quite a bit.

10.5 More General Index Types

HERO-ML has integers, and tuples of integers, as index types. But also other index types could be
considered. The only properties required are that values of the type can be compared for equality,
and that there is a total ordering on them. This would allow abstract arrays that are basically
maps, enabling data parallel programming with maps.

10.6 A Richer Set of Numerical Types

In numerical computing the results are typically approximate. At the same time, many embedded
numerical applications are resource-demanding. Resources can be saved by lowering the numerical
precision, creating a tradeoff between cost and precision. A prominent example is deep neural
networks where the cost sometimes can be significantly reduced, while maintaining acceptable
precision, by reducing the word length for floating-point operations or swithhing from floating
point arithmetic to fixed point arithmetic. A richer set of numerical types would thus leveragee
HERO-ML as a tool for optimizing the numerical precision in modeled appplications.

10.7 User-defined Bounds

Bounds are set representations. We require that certain functions and operations on bounds are
supported, and that they have certain properties. These could be seen as an abstract interface,
hiding the internal details of the set representations. An intriguing possibility is to provide means
for defining user-defined bounds that implement the interface.

11 Reference Implementation

A prototype interpreter has been implemented for the language- It can parse and execute HERO-
ML programs entirely in software, supporting the complete language as specified in this document.
This allows programs to be quickly validated and debugged without the need to first translate
the code into some auxiliary program format, to be compiled and run separately. The interpreter
is a command line application written entirely in F#, and so should be supported on all major
platforms without modifications to the source code.

The overall design of the interpreter is fairly straightforward. Taking the name of a HERO-ML
source file as a command line argument, it begins by parsing this file to generate an abstract
syntax tree (AST) for the program. After this, the AST undergoes a validation step where any
remaining static correctness checks that could not practically be performed during parsing (such

32

as type checking) are carried out. Finally, if the program passed the previous two steps, it is
executed from start to finish using the AST as the program format.

Throughout the program execution, a representation of the current HERO-ML program state
is maintained in memory in the form of a dictionary data structure (implemented using the type
Map from the standard library of F#), which keeps an entry for each program variable holding
the variable’s current runtime value. Variables that are local to, e.g., forall expressions are also
added to the dictionary, but only temporarily while the expression in which they are bound is
being evaluated. The actual program execution is an iterative process analogous to applying
the semantic rules of Section 7 to the AST nodes and the program state in a repeated fashion,
generating updated program states until the program terminates. Any out statements occurring
in the program are handled by printing a textual representation of the specified output value to
the console.

To represent the runtime values of variables as well as any intermediate results generated
during expression evaluations, a custom type V alue is used, which is an F# discriminated union
with one case for each HERO-ML type. The scalar types of HERO-ML—integers, floats, and
booleans—are represented using the corresponding primitive data types of F#. Bounds and
arrays are represented using custom aggregate types, described in more detail below. In addition,
the V alue union includes cases for certain symbolic values, such as the special value “?”, as well
as an “ERROR” value which symbolizes a program error generated during expression evaluation.
In most cases, occurrences of the ERROR value immediately cause execution to terminate with
an error message printed to the console.

The runtime representation used for bounds is fairly simple, using an F# discriminated union
for the different types of bounds: dense, sparse, predicate, and product bounds, as well as empty
and all. Some of these bounds require additional parameters for their definition: A dense bound
l..u is given by a pair of integers, and a product bound (b1, . . . , bm) stores the factors b1, . . . , bm
in an F# list. For a sparse bound (S, dim, n) (see Section 9.1.2), the set S uses the Set datatype
from the F# standard library, as this type provides fast operations such as membership lookups
and computing set unions and intersections. The individual (one- or multidimensional) indices of
S are represented using a custom type Index, which is simply a type alias for an integer list. For
predicate bounds, the predicate is stored as an F# function of type Index → bool which, when
applied to an index value, evaluates the predicate with the local index variable(s) of the predicate
temporarily bound to the given index.

To represent abstract arrays, two pieces of data are combined: a bound (of the type described
above) as well as a data structure which maps individual indices of the bound to their corresponding
array elements. Once an array has been defined, the operation of accessing its elements by using
indices involves two steps: First the index is checked for membership in the bound. If this check
fails, then the operation immediately returns the symbolic ERROR value to signal an access out-
of-bounds. Otherwise, the mapping component of the array is used to look up the value stored
for the index. The mapping component of the array definition comes in an implicit as well as an
explicit variant. The implicit representation is used for array comprehensions and forall expressions
before they have been evaluated into the tabular form (see Section 7). It implements the element
lookup step using an F# function of type Index→ V alue, which is defined to evaluate the body
expression of the array with the index variable(s) temporarily bound to the query index. It should
be noted that although the index has been confirmed to belong to the bound of the array prior to
the lookup, the evaluation of the body might yet result in the symbolic ERROR value. This can
occur if the array is a forall expression and its bound is a strict overestimation of the true domain
of the body expression. Since the language semantics states that in this case, the overall result
of the array access should be “?” instead of it generating an error, the ERROR value is simply
replaced by the symbolic value representing “?”.

The explicit variant is used for any arrays that are in the tabular form, which includes explic-
itly defined arrays as well as implicitly defined arrays that have undergone evaluation (note that
this implies the arrays are finite). This representation stores every element of the array in fully
evaluated form in a “data store”, which is a one-dimensional F# array with the same number of
elements as the HERO-ML array being represented, with the elements ordered by the lexicograph-

33

ical ordering of their indices. This provides a memory-efficient representation which supports fast
element lookups (constant time for one-dimensional dense arrays). In the case of multidimensional
HERO-ML arrays, the query index must first be translated into a one-dimensional index for the
lookup to be performed. This is done as follows. Upon creation of an n-dimensional finite array
with bound b, the minimum bounding hyperrectangle of b, B = (l1..u1, . . . , ln..un), is calculated
(where B = b if b is dense). The lexicographical ordering of n-dimensional indices then gives a bi-
jective map from B to the range 0, . . . , size(B)−1, where size(B) = w1×· · ·×wn, wj = uj−lj +1.
Specifically, given an index (i1, . . . , in) ∈ B, its (0-based) position in the lexicographical order is
given by

i′ = (i1 − l1)× (w2 × w3 × · · · × wn) + (i2 − l2)× (w3 × w4 × · · · × wn) + · · ·+ (in − ln)

This operation could be viewed as “unfolding” the n-dimensional box B into a one-dimensional
range of indices. Conversely, given an unfolded index i′ ∈ [0, size(B) − 1], the corresponding
“folded” index (i1, . . . , in) ∈ B is given by

i1 = l1 + (bi′/(w2 × w3 × · · · × wn)c mod w1)
i2 = l2 + (bi′/(w3 × w4 × · · · × wn)c mod w2)

...
in = ln + (i′ mod wn)

If the array is dense (i.e., if its bound b is), then the one-dimensional index into the data
store corresponding to a particular n-dimensional index is given simply by the above unfolding
operation, which takes Θ(n) time to perform. However, if the array is sparse with set(b) (set(B),
then this means that there will be elements which are adjacent in the data store although their
(unfolded) indices differ by more than 1, as the intervening indices correspond to n-dimensional
indices that fall inside B but are not part of b itself. Thus, in this case the data store forms a
sequence of dense clusters of elements—of elements at consecutive indices (or consisting of single
isolated elements)—To facilitate element lookups in this case, a type of cluster dictionary is kept
alongside the data store. The cluster dictionary is an array of integer triples (sj , oj ,mj), where sj
gives the unfolded index of the first element of cluster j, oj gives the offset of where the cluster
begins in the data store, and mj gives the size of the cluster. In other words, cluster j spans the
unfolded indices sj , . . . , sj + mj − 1 and its elements are located at positions oj , . . . , oj + mj − 1
in the data store. The cluster dictionary is sorted on the starting index sj (or, equivalently, the
offset oj), allowing the cluster into which an unfolded index i′ falls to be found quickly by a
binary search for the smallest value j′ such that sj′ ≤ i′. The element corresponding to i′ is then
located at position oj′ + i′ − sj′ in the data store. As the number of clusters in an array of m
elements is O(m), each element lookup thus takes Θ(n) +O(logm) time in total, and the memory
requirements are Θ(m).

References

[1] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Implementation
of a portable nested data-parallel language. J. Parallel Distrib. Comput., 21(1):4–14, Apr.
1994.

[2] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D. Weathersby.
The case for high level parallel programming in ZPL. IEEE Computational Science and
Engineering, 5(3):76–86, 1998.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proc. 4th ACM Symposium on
Principles of Programming Languages, pages 238–252, Los Angeles, Jan. 1977.

34

[4] J. Holmerin. Implementing data fields in Haskell. Technical Report TRITA-IT R 99:04, Dept.
of Teleinformatics, KTH, Stockholm, Nov. 1999. http://www.es.mdh.se/publications/5438-.

[5] J. Holmerin and B. Lisper. Data Field Haskell. In G. Hutton, editor, Proc. Fourth Haskell
Workshop, pages 106–117, Montreal, Canada, Sept. 2000.

[6] P. Hudak. The Haskell School of Expression: Learning Functional Programming through
Multimedia. Cambridge University Press, USA, 2000.

[7] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, Jr., and M. E. Zosel. The
High Performance Fortran Handbook. Scientific and Engineering Computation. MIT Press,
Cambridge, MA, 1994.

[8] D. Maier. The Theory of Relational Databases. Pitman, London, 1983.

[9] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis, 2nd edition.
Springer, 2005.

[10] Thinking Machines Corporation, Cambridge, MA. Getting Started in *Lisp, June 1991.

[11] C. Thornberg. Towards Polymorphic Type Inference with Elemental Function Overloading.
Licentiate thesis, Dept. of Teleinformatics, KTH, Stockholm, May 1999. Research Report
TRITA-IT R 99:03.

[12] C. Thornberg and B. Lisper. Elemental function overloading in explicitly typed languages. In
M. Mohnen and P. Koopman, editors, Proc. 12th International Workshop of Implementation
of Functional Languages, pages 31–46, Aachen, Germany, Sept. 2000.

A Detecting Index Expressions for Stride-Shifted Arrays

We now describe or current method how to detect that an index expression is on a format equivalent
to either s · x + o, where x is an index variable and s, c are integers, or to a constant. We use
this method to decide, for each index expression ei in an array application e[e1, . . . , em], whether
it equals si · xj + oi for some forall variable xj , where si 6= 0, or if it equals a constant. The
function L, defined below, takes an evaluated index expression as argument and tries to rewrite it
into the format defined above.

This information defines the bounds for multi-dimensional forall-expressions through the dif-
ferent “bproj ” functions, as described in Sections 9.1 and 9.2. The bproj functions are in turn
defined by the partial functions C and p, which are defined as the smallest partial functions
satisfying the following:

L(eval(ei)) = ci =⇒ C(i) = ci (64)

L(eval(ei)) = si · xj + oi where si 6= 0 =⇒ p(i) = j (65)

The L function is defined below. In each rule c, s, and o are integers, and x is a variable:

L(c) = c (66)

L(x) = x (67)

L(−e) = (−s) · x+ (−o), L(e) = s · x+ o (68)

L(e1 · e2) = L(e2 · e1) = 0, L(e1) = 0 (69)

L(e1 · e2) = L(e2 · e1) = (c · s) · x+ (c · o), L(e1) = s · x+ o, L(e2) = c (70)

L(e1 + e2) = L(e2 + e1) = s · x+ (o+ c), L(e1) = s · x+ o, L(e2) = c (71)

L(e1 + e2) = L(e2 + e1) = (s1 + s2) · x+ (o1 + o2), L(ek) = sk · x+ ok for k = 1, 2 (72)

L(e1 − e2) = L(e1 + (−e2)) (73)

L(e) = e, e is any other type of expression (74)

35

The rules are not complete. There are cases where they will fail to rewrite expressions into the
required format even when they should be able to. But we believe that these cases will be very
rare in practice.

An alternative method would be to attempt to rewrite the index expression into polynomial
standard form, for which there are well-known methods. It can easily be decided from the standard
form whether the expression has the right format. We might implement this method in the future.

36

	Introduction
	HERO-ML Overview
	Abstract Arrays, and Bounds
	Types

	HERO-ML Syntax
	HERO-ML Concrete Syntax

	HERO-ML Functions
	Numerical Functions
	Boolean Functions, and Operators
	Conditional Function
	Test for Undefined Value
	Functions on Abstract Arrays
	Functions on Bounds

	I/O
	A Worked Example: Feed-Forward ANN
	Background
	Feed-Forward Networks
	Modeling of Feed-Forward Network Computing with Hero-ML

	HERO-ML Semantics
	Semantics for Join and Meet
	How to Derive Bounds for Forall-expressions
	Multi-Dimensional Bounds
	Multi-Dimensional Product Bounds
	Multi-Dimensional Sparse Bounds
	Join and Meet for Multi-Dimensional Sparse Bounds
	Multi-Dimensional Predicate Bounds

	Bounds for a Class of Linearly Shifted Arrays
	Bounds for One-dimensional Shifted Arrays
	Multi-dimensional Product Bounds
	Sparse Multi-Dimensional Bounds
	Detecting Index Expressions for Stride-Shifted Arrays

	Possible Future Extensions of HERO-ML
	User-Defined Functions and Procedures
	Elemental Overloading, and Promotion of Scalars
	Array Syntax for Selection of Substructures
	Other Syntactical Conveniences
	More General Index Types
	A Richer Set of Numerical Types
	User-defined Bounds

	Reference Implementation
	Detecting Index Expressions for Stride-Shifted Arrays

