
Barriers for Adopting FMI-based Co-Simulation

in Industrial MBSE Processes ∗

Johan Cederbladh, Anna Reale, Andreas Bergsten,
Richard Mikelöv, Antonio Cicchetti

johan.cederbladh@mdu.se

October 16, 2023

Abstract

Model-Based Systems Engineering (MBSE) is a growing paradigm
for system development where models are the primary considered arte-
facts. However, MBSE often relies on semi-formal modelling languages
and methods, limiting analytical capabilities. Co-Simulation is argued
in the literature to be a promising technology in the simulation domain
for integrating heterogeneous models in unified simulations. The most
commonly used standard for Co-Simulation is currently the Functional-
Mockup-Interface (FMI), supported by many tools in the industry. Re-
cently there has been increasing interest in utilizing co-simulation in MBSE
processes to enable simulation capabilities earlier in development, mainly
via instantiating simulations using the FMI standard from system ar-
chitecture views. This paper briefly argues the case for co-simulation
for industrial MBSE and presents several barriers to integration from
a holistic point of view. The paper highlights the need for further re-
search and progress to improve the maturity of the industrial adoption
for MBSE workflows while discussing the current outlook for FMI-based
co-simulation orchestrated from architecture models.

Keywords: MBSE, Co-simulation, FMI, SysML, Systems Engineering

1 Introduction

Systems Engineering (SE) is a discipline for managing systems throughout
their life-cycle. The International Council On Systems Engineering (INCOSE)
broadly define a system as: “... an integrated set of elements, subsystems,
or assemblies that accomplish a defined objective.” [34]. Indeed, using SE is

∗This is a pre-print for an article accepted at a MODELS2023 workshop. This work
was partly funded by the AIDOaRt project, an ECSEL Joint Undertaking (JU) under grant
agreement No. 101007350.

1

often motivated by the need to manage complexity and introduce rigorous pro-
cesses for the system life-cycle. Currently, there is a rise of complexity in the
systems developed, partly it can be attributed to the rise of software [24], and
the increasingly heterogeneous domain integration, for example, Cyber-Physical
Systems (CPSs) [30]. SE is undergoing a digital transformation to meet these
challenges, including adopting surrounding technologies to meet the increasing
demands of system design and development, such as DevOps [11]. However, one
of the more prominent evolutions of SE is using models as the underlying core
artefacts, also referred to as Model-Based Systems Engineering (MBSE) [23,35].
In this case, a model is considered to describe something without being the thing
itself [21]. Since the use of models relies on abstraction, it is essential to have
a clear purpose and scope of a model, as it often is only valuable for a given
specific context. In the domain of MBSE, the de facto standard language for
system models is SysML from the Object Management Group (OMG)1. SysML
is a semi-formal language, originally extended from the UML, that uses various
diagrammatic views to represent a system. Models are seen as a powerful means
of tackling complex systems descriptions while adding value, such as increased
traceability and collaboration [12]. At this stage, the use of models, and in
particular SysML, is a best industry practice. More recently, there has been an
increasing wish to leverage SysML models, often created at early stages of devel-
opment (and maintained throughout), for enhanced analysis to further leverage
the benefits of digital models and provide businesses with a competitive edge
during development.

SysML models are often not inherently executable due to the semi-formal na-
ture and the often high-level abstraction in models. In order to use SysML mod-
els for meaningful simulation, they often require more rigour, which can be done
through various techniques from model-based engineering, like model transfor-
mations, or more recently by leveraging Co-simulation [13, 27]. Co-Simulation
is a technique that leverages some form of interchange between simulation mod-
els, enabling more modular and flexible simulation, for example, using different
notations in a uniform simulation. Currently, the most widespread standard for
co-simulation is the Functional-Mockup-Interface (FMI)2, which is supported by
a wide array of tools. The FMI standard, in particular, enables co-simulation
via abstracting simulation models to black boxes, which only detail input and
output signals and possibly some model parameters. Engineers can then freely
connect these models to create system simulations regardless of the underlying
notation and tools for the individual models.

One potential use of co-simulation when leveraging the FMI standard is using
SysML diagrams as architecture descriptions, which then are mapped to simula-
tion models to orchestrate system simulations. This way, a user can use SysML
to define system architectures which can re-use simulation models compatible
with co-simulation enabling simulation orchestration from SysML without the
need for detailed simulation knowledge, potentially lifting the simulation capa-

1https://www.omg.org/spec/SysML
2https://fmi-standard.org/

2

bility earlier in the design process for a wider audience. However, integrating
co-simulation technologies in MBSE processes is more complex than often por-
trayed in literature. This can be attributed to the use of co-simulation originally
not being aimed at MBSE processes, even though there is increasing industrial
attention. In this paper, we discuss some practical inhibitors of co-simulation
and MBSE, and we use the SysML language and FMI standard as the context
for co-simulation and present our views on what steps need to be taken going
forward.

The rest of the paper is structured as follows, Section 2 further provides
the necessary background and related work on crucial terminology and topics.
Section 3 gives an overview of industrial motivation. In Section 4, we present
and discuss our identified barriers. Section 5 provides a discussion of the paper,
and finally, Section 6 concludes the paper and presents future work.

2 Background and related work

SE is a discipline which regards standard practices and processes for develop-
ment and often guiding standards such as ISO 152883 and ISO 420104 which
detail general approaches for the development of systems are used to guide en-
gineers. Notably, the standard procedure is development in stages using various
system views to describe systems. There are many examples of workflows across
development stages created for MBSE in literature [9], and often they might be
particular for a specific domain. SE best-practices often aim to reduce risks for
faulty design, as the cost of addressing a design issue increases exponentially as
the system development progresses [34]. Nevertheless, SE is often an iterative
approach, which takes customer needs and requirements to express a problem,
where the aim is to find a suitable solution, often based on some trade-offs for
the particular case. Indeed, SE is often a process of systematically narrow-
ing design through various stages during development, such as the standard
V-model [34]. In the early stages of development, when systems are described
in high-abstraction and using functional and logical descriptions, the solution
space will often be extensive and practically endless regarding large product
families and systems with high variability [6]. In this way, iterative processes
are often needed to continuously shrink the solution space based on analysis
and refined customer requirements and needs. Part of the process is gradually
limiting the design by introducing stricter requirements or locking architectural
design. These processes eventually lead to engineers making decisions that will
determine the detailed design.

With the digitalisation paradigm shift, MBSE is seeing increasing industrial
adoption [14, 32, 33]. MBSE replaces the traditionally document-centric devel-
opment by employing models at all stages of development as the primary arte-
facts of development. Practically, MBSE is often related to using semi-formal
languages like SysML for system descriptions [12]. As the standard practice for

3https://www.iso.org/standard/63711.html
4https://www.iso.org/standard/74393.html

3

MBSE involves SysML, there are limitations to what can be analysed at the lan-
guage level. The strength of semi-formal languages like SysML is the freedom of
extension and usage, along with often mature tooling integrated capabilities of
traceability and allocation of stakeholder concerns [8]. However, the literature
argues that simulation is a necessary capability of SysML [27]. Strengthened
analytical capabilities could improve decision-making while increasing the over-
all value of employing MBSE [1]. Typically simulation will not be done on
SysML models directly, and there is extensive reporting on the use of model
transformations [28].

More recently, extending SysML models with support for FMI instantiated
simulation has been introduced [3, 13, 27]. From a high-level view, the FMI
standard describes a format for black box representations of simulation models
called Functional-Mockup-Units (FMUs). The considered simulation models are
compiled into inaccessible source code only detailing inputs, outputs, and some
model parameters (more so in the newer 3.0 version). FMUs can be seen as
simulation ”building blocks”, where these models have a high degree of abstrac-
tion, which can be connected via their interfaces (inputs - outputs) to create
more extensive simulations. A key benefit in this regard is the ability to re-
use and combine models defined in different languages and tools. Additionally,
the abstraction introduced by FMI maps well to typical SysML models, paving
the way for the linkage of models using automated means—particularly block
diagrams map well to the FMI abstraction layer.

However, previous industrial reports on FMI have been critical of the stan-
dard functionality [5], for example, due to the non-determinism and wrongful
output for even simple cases like a bouncing ball. Similarly, academic reporting
has been done on the FMI standard, detailing many issues that significantly
impact the standard’s useability [29]. The newer version of FMI 3.0 promises
to improve many of the observed issues, but it remains to be seen whether that
can be confirmed on a broader scale [20]. In this paper, we provide a similar
report from the context of industrial MBSE processes and highlight our view on
current inhibitors for co-simulation integration based on our experiences with
both the FMI standard and MBSE relying primarily on SysML.

3 Industry motivation and case

As mentioned, industrial SE is predominantly based on standard processes and
methods. Typically a system life-cycle is divided into stages, considering gates,
which mark distinct transitions between life-cycle stages. ISO 15288 is a stan-
dard that exemplifies a generic system life cycle process with several stages, Con-
cept, Development, Production, Utilisation/Support, and Retirement. There
are many similar definitions and flows, for example, detailed in the INCOSE
SE handbook [34]. As the system traverses the life-cycle, the knowledge and
confidence of the system increases, manifested as increasing detail during design
and operational data once the system is deployed. In addition to system knowl-
edge and confidence increasing, there are typically different people and roles

4

with corresponding responsibilities at distinct stages. For example, a Require-
ments engineer, system architect, and system verification engineer will typically
consider different views of a system. The need for unification in development
and between teams is increasing with the rising complexity of systems. Models
and MBSE is a means of connecting different stakeholders across developmental
stages in more integrated views. The rise of MBSE can partly be attributed to
the rise in digitalization, and for SE the notion of a systems digital thread is a
growing domain [31]. The digital thread concept and parallel technical advance-
ments aim to create robust traceability and data sharing across traditionally
separate silos of development. Using models (or other digital artefacts) could
promote collaborative efforts by leveraging abstraction with common languages
and tools.

In SE, it is essential to re-use knowledge, and often previous analysis re-
sults can be used as proof of viable design [34]. Typically service history of
a particular system can impact the design of a new version or re-use of sub-
parts of a product to avoid redoing expensive verification or validation tasks.
Co-simulation via FMI (or other standards) promises a new method of re-use,
allowing models to be seen as abstract blocks that can be used for analysis
earlier than traditional means of simulation. In particular, the black box view
maps well to the internal block diagrams, which typically describe system archi-
tectures in languages like SysML. A high-level view of how the FMI standard
might typically be implemented is visualised in Figure 1. Based on a SysML
model, information is extracted to instantiate a simulation configuration. Typ-
ically a Simulation will consist of a System under Study (SuS), a Scenario, and
some Evaluation. A generic approach to extracting this data from typical MBSE
models is by interpreting block diagrams as the SuS and identifying appropriate
simulation models that match the SuS from a library of FMUs. A benefit of
considering co-simulation formats as FMI is that the simulation models do not
necessarily need to originate from the same language or tool. As such, flexibility
is introduced in the simulation context as models can be picked more freely in
a modular fashion to create simulation models. The Scenario will consider the
system’s environment and any external factors that provide input for the ex-
periment at hand, typically read from parameter representations in the SysML
model. The evaluation part of the simulation is required to interpret the re-
sults. It is typically based on requirements from the original model to define
what should be observed and what constitutes a pass or fail in the experiment.

Leveraging model-based methods increases opportunities to create unified
system models that can act as single sources of truth. Introducing a SysML
model as a ”back-bone,” engineers can leverage the model as an information
source to create, for example, simulations as part of the analysis, particularly
in the early stages of development. Using SysML further enables users access
to domain-specific simulation models previously not accessible by a wider au-
dience due to tooling, notation, and simulation knowledge. Simulation at early
stages is most of the time used for initial virtual experiments or ”what-if” sce-
nario analysis. The system is limited to the SysML model, so it can often be
very coarse-grained. Introducing this capability could, as such, be a means of

5

Model A Model B Model C

IBD Function

: Battery

: SystemA
: SystemB

: SystemC

Parameters

Requirements

Behaviour

Structure

Variability

Fe
ed

ba
ck

Model AModel A

Map

Model BModel B

Map

Model CModel C

Model CModel A

Model B

Simulation

Map

Ex
tra

ct
io

n

Setup

System Under Study (SuS) EvaluationScenario

Setup

FMU Library

SysML model

Parameters
Structure,
Behaviour Requirements

Variants

Input

Orchestrate

Figure 1: Leveraging MBSE and FMI for increased digital workflows.

making more informed decisions based on the traditionally used SysML models,
or decisions could perhaps be made earlier compared to traditional processes.
Adding automation to the described process would create value, as legacy silos
often need to manually transfer domain knowledge between one another. As
such, the case for introducing co-simulation processes in MBSE is seemingly
worth pursuing. An added benefit of an early definition of a single source of
truth is that it can be maintained throughout the project, reducing the need for
additional tools and maintaining a more robust unification of artefacts through
a digital thread.

4 Adoption barriers

Based on the previous sections, there is substantial motivation and value propo-
sition for introducing co-simulation in MBSE settings. This section details what
the authors believe are current barriers to co-simulation (using FMI) in indus-
trial MBSE settings (using SysML) based on experiences of implementation.
Each identified barrier will be discussed regarding the perceived problems and

6

potential solutions, summarized at the end of each sub-section with highlights
for future research.

4.1 Integration in SE workflows

SysML models are typically used for systems engineers to design a system top-
down, breaking down requirements and providing adequate allocation through
the system design. Simulation as an analysis method requires a certain level of
maturity in system descriptions, at least when used for Validation and Verifica-
tion (V&V) purposes. In traditional SE processes, these activities are performed
in distinct stages of development. As such, it begs the question, who does the
co-simulation capability cater to? A system engineer typically does not need to
consider simulation analysis, as the engineer will traditionally be concerned with
the system from a logical perspective and focus on requirements, traceability,
etc. At the same time, simulation engineers already have access to advanced
simulation environments and the corresponding knowledge to leverage these
tools for complex analysis. Considering this, there is a need to enable a smooth
integration between the various involved actors and considered domains. In
the digital thread, seamless integration between various developmental efforts is
needed, and engineers need to have knowledge of both domains for integration
purposes, visualized in Figure 2.

Simulation EngineerSysML Engineer
Integrator

Figure 2: Stakeholders of MBSE co-simulation.

While the Integrator in the figure could refer to partly tooling-related
concepts, it begs the question of who these stakeholders would be. Additionally,
the notion of why you should perform co-simulation is similarly essential to who
has the primary stake in the process. The application of these technologies
should improve the processes for product development and design. In this case,
it must be clear that the capability provides something new in value compared
to existing methods. The two other stakeholders in this case, the SysML and
Simulation engineers should be involved with the Integrator. However, in
this case, there is a clear gap in the traditional responsibilities and knowledge,
so effort and increased resources must be allocated to bridge the domains.

Furthermore, employing co-simulation with SysML for architecture defini-
tion requires a mature understanding of how the mapping should be made be-
tween the two notations. At this point, the required tooling and techniques are
realized by various practical means, for example, model transformations. How-

7

SysML

FMI

Internal Block Diagrams

: B2: B1

Functional Mockup Units

: HW_Component: SW_Component

Signal_A

Sig_A: Int

CANBUS_Node CANBUS_Node

SW
HW

Figure 3: A typical gap between SysML diagrams and FMUs for co-simulation.

ever, there is a gap in a systematic means of guiding a system modeller to por-
tray enough information for cross-domain simulation. Often system modelling
regards logical descriptions of systems, and many typical approaches for MBSE,
such as MagicGrid, regard physical properties as not part of MBSE [26]. In this
way, often logical architectures are defined, which for example, only considers
that there is a signal and not what the signal is. Figure 3 highlights a typical
instance of the gap, where SysML models with logical architectures should be
mapped to FMUs with correspondingly higher levels of detail. The figure shows
a typical manifestation of the gap, as the SysML model often highlights the
presence of different blocks with corresponding interfaces typed, such as HW
or SW with a standard signal A. For physical simulation, the same components
in the FMI format could, for example, explicitly mention the communication
protocol, signal types, and communication speed to enable simulation.

The standard means of using MBSE is not directly compatible with co-
simulation since physical information is often missing or represented in ad-hoc
fashions. Physical simulation models defined in languages such as Simulink
or Modelica contain more physical information than SysML models, which has
traditionally not been an issue due to the underlying difference in technical audi-
ences. With the advent of co-simulation there is an expected merge of concerns.
Still, the fact remains that SysML block diagrams typically only consider logical
signals rather than physical ones, as it is simply not of interest to a system mod-
eller. While the solution often boils down to the need to increase detail in the
SysML model, perhaps with another view or with a corresponding stereotype, it
still poses the challenge of implementing those details as that is typically not the
responsibility of a system engineer/architect. This is a knowledge gap, and work
is required to understand better how this gap can be bridged with re-use, collab-
oration, or reasoning. While mechanisms to extend the SysML language exist,
and there are many examples of successful implementation, the standard meth-

8

ods of implementing SysML omit the notion of simulation integration. Without
a more unified view from the community, there is a considerable risk that the
successful integration will remain anecdotal and ad hoc. In particular, referring
to Figure 3, the typical ”end” for MBSE approaches does not detail the physical
properties necessary for simulation.

So while the notion of using co-simulation with a technical integration from
SysML and FMI is technically sound, which engineer it caters to in the devel-
opmental process needs to be clarified. Co-simulation is one of many proposed
capabilities for MBSE, particularly in the move towards seamless integration
between development stages. While a more integrated workflow is attractive,
it necessitates that the traditional engineering roles are revisited and that new
methods and techniques are adequately satisfying those engineering needs. This
is a challenge regarding the use of co-simulation, particularly as the use of Co-
simulation in industrial MBSE flows has increased potential value proportional
to how early the considered system is in its developmental cycle. The ability to
simulate systems for early analysis already by reading requirements and orches-
trating valid simulations could significantly boost developmental progress and
company competitiveness.

However, parallel considerations of uncertainty arise by introducing the no-
tion of the early phase or stage. A system at the early stages of development is
not fully understood, and details are often not yet realized or to be determined
with the corresponding analysis. Therefore the ability for system simulation
should be considered carefully as it most likely is re-using simulation models
from other systems or contexts, requiring some analysis on the feasibility and
validity of re-using those models. At the same time, due to the presence of un-
certainty at this stage, some assumptions of the system and its environment are
most likely needed, further hindering the ability of reasoning about simulation
validity. It might be possible to re-use knowledge about previous cases and anal-
ysis. However, it requires mature methods of storing the necessary information
accessible and scaleable, somewhat hindered by the black box representation of
the eventual simulation models.

Highlight and summary

Mapping the SysML language to the FMI standard is at this point well
known. However, it is less clear who the technology caters to in the scope
of the broader SE landscape. Additionally, the notion of early analysis
is not well understood, and it is necessary to evaluate how high-fidelity
simulations can guide early decision-making in low-fidelity system models.

4.2 Leveraging FMI for simulation

FMI is positioned as a critical enabler for interconnected simulations using het-
erogeneous models, leveraging black box representations to hide the underlying
model complexity and implementation. There are reported examples of success-
ful integration in the industry [15, 18], and actors as Bosch praising it as being

9

a key enabler in the future5 (particularly the newer 3.0 version). Indeed, the
need and willingness for the industry to adopt co-simulation through FMI is
increasing in recent times. Notably, the notion of model re-use and reduction
of vendor lock-in pushes adoption.

However, as mentioned in the background, version 2 of FMI has been studied
in academia and industry for its issues during simulation. Particularly the insta-
bility of simulation and non-determinism have been technical barriers necessary
to overcome. The newer 3.0 version promises to reduce a lot of the existing
issues. As part of ongoing work, we evaluate the reliability of FMI models and
extract a small simulation case study from the work [25]. Models compliant
with FMI under various setups in commonly used tools, namely Simulink and
OpenModelica, are simulated. Results are compared between baseline simula-
tions (in the corresponding tool) and the same simulation with FMI formatted
models (again simulated in the same tool). To promote reproducibility, we uti-
lize a Mathworks example model of a vehicle model6 as the SuS. The model is
constructed at a glance, as seen in Figure 4.

Drive-cycle Engine Drive-lineDriver Glider

Output
APP

Rads
Engine Torque

NetTraction

Velocity

Velocity

Feedback

Figure 4: High-level view of the vehicle simulation.

The model is a holistic simulation of a vehicle stimulated with a particu-
lar input drive-cycle. It consists of five major sub-systems, the Drive-cycle,
Driver, Engine, Drive-line, and Glider. A drive-cycle stimulates the driver,
and the rest of the blocks are connected in a feedback loop. For our evalua-
tion, we take five signals as outputs, Accelerator Pedal Position APP, Rotational
speed of the engine Rads, Engine Torque, Net Tractive Force NetTraction,
and Velocity. At least one signal from each block is viewed and logged for exe-
cution traces to analyze. We perform a rudimentary evaluation of the standard
stability by re-employing the individual model elements as FMUs and orches-
trating simulation via co-simulation. The results highlight numerical issues with
both FMI 2 and FMI 3 with ”off the shelf” solutions. Additionally, we use a

5https://www.bosch.com/stories/fmi-3-0-the-next-generation-exchange-format-for-
system-simulation-beyond-tool-borders/

6https://github.com/mathworks/vehicle-modeling/releases/tag/v4.1.1

10

standard drive cycle7 (class 3b) as the primary input for the driver model. We
utilize two versions of Simulink (2023a and 2022b) to create and simulate the
vehicle simulation models. We then export the models to FMUs using Simulink
functionality and again execute them in the Simulink or OpenModelica tools
and compare the execution traces. In the case of FMI version 3, we only do it
for Simulink. Table 1 shows a high-level comparison view where we detail the
previously mentioned monitored signals error in execution between FMU exe-
cution and the original model in terms of max, average, and duration of errors.
We note that in this particular case, we are not interested in the viability of
the original model but rather in the reliable reproduction of execution of the
exported FMUs. The export function is made using the standard procedure of
the tools and validated based on available methods from the FMI project8.

Table 1: Comparison of FMI execution and original model execution
FMI version 2 execution (OpenModelica) based on Baseline23a

Signal Max Error Average Error Error Duration
Torque [Nm] 236.85974 4.74922 33.94035%
Rads [Rad/s] 144.59612 3.78094 99.99946%

NetTractivForce [N] 2133.16059 23.55839 35.14792%
Velocity [Km/h] 11.68082 0.988475 99.99946%

App [%] 64.18139 2.830221 34.28738%
FMI version 2 execution (Simulink) based on Baseline23a
Torque [Nm] 101.38549 0.50454 33.69225%
Rads [Rad/s] 81.85649 0.78449 99.99946%

NetTractivForce [N] 2695.53942 9.55547 34.82305%
Velocity [Km/h] 0.33310 0.01355 99.99946%

App [%] 14.87628 0.14465 34.04036%
FMI version 3 execution (Simulink) based on Baseline22b
Torque [Nm] 46.21097 0.15584 33.67495%
Rads [Rad/s] 81.31894 0.11835 99.99783%

NetTractiveForce [N] 2190.38639 2.28989 34.19549%
Velocity [Km/h] 0.14663 0.00398 99.99946%

App [%] 6.970128 0.04858 34.00251%
FMI version 3 execution (Simulink) based on Baseline23a
Torque [Nm] 82.04390 0.44762 33.69333%
Rads [Rad/s] 81.16435 0.75782 99.99946%

NetTractivForce [N] 2697.39773 8.75499 34.79548%
Velocity [km/h] 0.31593 0.01233 99.99946%

App [%] 14.75038 0.12734 34.04305%

The table summarises exporting individual sub-systems, simulating via Co-
simulation, and comparing the results to the original Simulink execution traces

7https://www.wltpfacts.eu/what-is-wltp-how-will-it-work/
8https://fmi-standard.org/validation/

11

from two versions at each time step. We average the discrepancy over time,
sampled 100 times per second in fixed step size over the standard drive-cycle (30
min). In both tables, the execution traces differ from the original model. While
it might be hard to position the effect of the error from the table alone, it is a
noticeable issue. Perhaps more alarming, the simulation runs differ significantly
for subsequent standard versions of Simulink (used to export the models as
FMUs). For some attributes, the signal errors are constant, for example, Rads
and Velocity, which is not strange due to the carry-over effect of the errors. The
NetTractiveForce instead is primarily correct (within a slight error of margin)
but has more significant spikes of errors (around size 50% of total signal value
for each simulation), we refer to [25] for a more extensive evaluation. While the
example is relatively simple and can be studied more extensively, it highlights
the ambiguous nature of the results and simply changing versions of the same
tool. The models can be more complex in larger system models, and in larger SE
contexts, there could most likely be a more diverse tool and language landscape.
Although the tables present a limited view regarding averaging the error and
not detailing the overall drive-cycle, we aim to emphasize the lack of ”out-of-
the-box” direct application.

With this in mind, it is necessary to catalogue and understand better how
co-simulation can be used and, perhaps more often, when it is reliable. The
example highlights that a model created with the same tool and language will
yield different results, what happens when languages and tools become more
heterogeneous? Some works address this issue and aim to solve issues with the
standard [2,5], in addition to the standard evolving itself. However, much of the
literature is, at this point, a decade old, and still, many of the same issues remain
with the standard observed at that stage. Notably, the worsened performance
from utilizing FMI (particularly version 2) is significant, also including increased
execution time (from seconds to hours in cases). For many purposes, the quality
of execution with FMI is unacceptable. It cannot be used, even considering the
early stages of development, where precise simulation is impractical due to the
system’s high uncertainty. In this regard, there is a need to understand further
when the results of FMI simulation can be considered valid. The standard itself
is also evolving with the new third version. Companies utilizing co-simulation
today might utilize more extensive libraries of older versions of the standard,
and there is a need to evaluate how these can be migrated to a newer version
or utilized in joint simulations.

While the notion of abstraction from FMI can enable a broader audience to
interact with the models, it simultaneously hides information about the under-
lying implementation of the models. In addition, while it is possible to reason
about the validity of an FMU in a particular domain, it becomes increasingly
complex in unfamiliar domains or when models are provided externally. As
such, engineers must apply additional knowledge to FMUs to annotate neces-
sary details for re-use purposes. Another issue is the expected increase of share-
ability across organisations due to the inaccessibility of the underlying models,
which should hide implementation details and protect Intellectual Property (IP).
However, trust for models which cannot be directly accessed can be difficult to

12

achieve, particularly across teams or organisations. The notion of black box
representations is at least a step towards more collaboration due to the ease of
hiding sensitive information. However, there are cases of IP leakage regarding
FMI, and using models makes it possible to infer information even if hidden
behind black box representations [10].

Highlight and summary

The FMI technology has several technical issues that hinder the broader
audience from using it off the shelf. The community must classify simula-
tion validity criteria and guidelines to utilise the technology for meaningful
simulation and model re-use in development, perhaps via examining FMU
extension mechanisms for re-use and classification purposes. Furthermore,
there are several concerns with IP leakage in the standard.

4.3 Automation

Referring back to Figure 1, this approach’s value is due primarily to the amount
of automation included in the transitions. Indeed, the value of automation ex-
tends to the overall notion of MBSE. A large part of the benefits compared to
traditional SE is the reduction of manual activities. In this case, activities do
not necessarily refer to the implementation of artefacts but rather the sharing
of data across teams. A system and verification engineer might need to in-
vest significant effort to transfer knowledge between models defined for different
purposes and abstractions. Due to the FMI standard leveraging abstraction,
moving simulation models to a similar abstraction as typical SysML models
paves the way for automation.

Leveraging increased simulation model abstraction should improve the inte-
gration capabilities between teams and tools, and abstraction, in particular, is
an enabler for many MBSE techniques [23]. The addition of simulation can help
design and preferably automatically propagate simulation results back to a sys-
tem model to smooth the process of V&V activities. Indeed, the closely related
paradigm of DevOps or other continuous practices like Continuous Integration
(CI) or Continuous Delivery (CD) would be a powerful enabling technique [11].
Figure 5 highlights a potential conceptual pipeline loosely based on previous
work [4]. In particular, we consider a DevOps process but limit the scope to
Design and Evaluation. In this case, the Ops considers model evaluation ac-
tivities instead of real-world deployment and operation. The Design considers
the activities of Plan, Model Creation/refinement, and Model Validation.
In essence, the Design considers the planning of new modelling efforts until the
eventual validation of the model, which depends on the properties of interest
and particular case. This model is primarily SysML based. Evaluation, on
the other hand, considers Model mapping, Model Execution, and Analysis.
In this stage, we consider the integration of different models (leveraged by the
FMI standard), along with the execution and eventual analysis, which propa-
gates back to planning the next iteration, closing the loop. In particular, analysis

13

results can be presented to an engineer through data visualisation in tools (for
example, seen in Figure 6) to make design choices in the SysML model.

Model mapping

Model

executio
n

Plan

 Design

Model
va

lid
ati

on

AnalysisModel

Validation Analysis

Ev
alu

at
ion

Model

creation/refinem
ent

Figure 5: A conceptual DevOps integration for design.

Through this flow, the Design is expected to consider individual modelling
efforts in less formal notations. In our case, some or all parts of the Design

consider SysML diagrams, while the Verification considers the automated
simulation orchestration and execution of more detailed simulation models.
As part of ongoing collaborations, the authors have worked extensively with
a CI/CD pipeline for FMU integration9, aiming to achieve an automated deliv-
ery of FMUs. As a case study, a Thermal Management System (TMS) of an
electrical machine battery has been the target. We highlight the case in Figure
6.

The original models are created primarily in Simulink and exported as a
single FMU. Several different variants exist for the system, which mainly affects
the coolant configuration in the TMS. Particularly, the parameters affect one
another, and different variants exist with corresponding relationship graphs for
the properties. Using typical drive-cycles for Construction Equipment (CE) ma-
chines, the aim is to find a suitable configuration to manage the temperature in
a specific range of temperatures while aiming to not over-dimension the solution.
Apart from the variability concerns, the model considers some starting condi-
tions, for example, ambient temperature, and outputs the battery temperature
for each time step. The graph shows three execution traces or different variant
configurations over a standard drive cycle of a CE machine. A CI/CD pipeline
was created to evaluate the viability of different variant designs and present the
result via execution traces to the user using the above-described model. In the
example, it is visible that one of the variants produces a very high temperature

9See challenge 7: mdu.se/aidoart/events/second-hackathon

14

Starting conditions

Drive-cycle

Battery
temperature

Coolant preasure Coolant flowVariant configuration

T(°C)

t(s)

Figure 6: Battery Thermal management case.

while the other two are more similar with lower temperatures. Based on the
execution traces, the user (or an automated tool integration) can change the
original information source (e.g., a SysML model) by parameterizing the model
based on the analysis and possibly instantiating new simulations.

In the solution, simulation models and simulation setup are automatically
packed into a ”Docker” container10. This way, the simulation can run anywhere
repeatedly and consistently. The user only needs to select input data to return
a different simulation result. Using Docker containers better fits typical DevOps
practices and enables complete isolation and portability that FMUs alone still
do not fully provide. In fact, FMUs require run-time dependencies to be handled

10https://docs.docker.com/

15

manually, which is against the idea of a simple, standardized model exchange.
For instance, let us take a commercial tool as an example of FMU flow usage:
building an FMU in MATLAB on a Linux OS will return an FMU with only
Linux64 binaries. To run the FMU as-is on a Virtual Machine or a distributed
environment will require either a compatible MATLAB version installed or pack-
aging it inside a docker container together with all necessary MATLAB binaries
(this is experimentally possible in MATLAB using compiler.package.docker, but
the result is a container on a scale of 1 GB for a simple FMU). Both solutions
strongly depend on the simulation tool, require maintenance efforts for upgrades,
and can create security issues (i.e., having to deploy a relatively old MATLAB
image with known security vulnerabilities). The current standard is a difficult
fit for an industrial workflow that enables the automation of simulations and
data collection using state-of-the-art DevOps tools. Solutions towards this bar-
rier have been proposed in [22], with the release of a command line tool that
facilitates the implementation of FMUs in other popular languages that would
otherwise not be able to produce C-compatible binaries, associated with a com-
mand to configure the generated model to deploy and execute code inside a
Docker container.

Furthermore, as FMI evolves, more information is being added to the mod-
els themselves, resulting from the difficulty in simulation orchestration with
the previous versions. As such, the evolution of FMI is seemingly going away
from the original black box view to increase the standard’s functionality. In
this way, enabling meaningful simulation without risking models leaking IP be-
comes essential. In particular, applying DevOps principles could enable a more
sophisticated method of test integration and feedback for the processes in de-
sign. Nevertheless, the intersection area between FMU and DevOps tools is
relatively unexplored and needs further work.

Highlight and summary

Integrating automation for simulation feedback and orchestration is a vi-
tal part of the expected value of FMI, and the DevOps paradigm is a
promising outlook. However, the current integration status of DevOps
and continuous practices is far from mature and requires more work to
realize mature and efficient automated solutions. Notably, there are tech-
nical barriers to cross-platform integration that inhibit industrial adop-
tion.

4.4 Value demonstration

When discussing the integration of co-simulation into SE workflows, it is ex-
pected to bring value to existing processes. Intuitively it seems straightforward
that enabling simulation earlier and improving re-use, particularly across do-
mains, is valuable as it can improve V&V, often reflected in literature and
industry. Figure 7 highlights a generic example of how knowledge of a system
will increase as development progresses and illustrates the potential effect of co-

16

Implementation

High
Knowledge
of system

Low
Knowledge
of System

Design
Gates

Concept

Traditional MBSE

MBSE with Co-sim

Availability
of simulation Value?

Figure 7: Example of how knowledge increases as the system traverses a (sim-
plified) developmental life-cycle and the potential value of simulation.

simulation and the eventual implementation value. While not perfectly captur-
ing the developmental progress, the main takeaway is that the motivated value
comes from reaching specific knowledge or confidence of a system earlier than
traditional methods. We exemplify this knowledge through the availability of
simulation. A large portion of the expected value is that using more automated
tooling for re-use and analysis could provide sufficient input for decision-making
at earlier stages of development and make existing processes more efficient.

Value is added to the process by introducing more knowledge earlier in devel-
opment, such as the availability of simulation models. However, the value should
be tangible. Value needs to be measured and compared to current best prac-
tices and baselines. In the broader context of SE, a current research limitation
is the lack of empirical measurements and evidence of added value attributed
to using MBSE [8, 17]. Similarly, the use of co-simulation mainly reports on
benefits which, in the end, are expected and not measured directly, hindering
reproducibility and viability in a broader context. Of course, providing tangi-
ble measurements of processes and improvements in complex industrial settings
that often take place on a time scale of years is challenging. Since much of SE
research is applied in industrial settings, it can often be difficult to isolate and
truly measure specific aspects of scientific studies, mainly if case studies are
interconnected with the studied company. In this regard, the issue of provid-
ing empirical value is not a isolated problem for co-simulation with SysML and
FMI. Regardless, the community needs to understand the metrics of essence
and how they should be measured and reported. For instance, it will often be
argued that re-use and interoperability are improved, but that should be made
tangible; currently, such aspects are not. As seen previously, this type of solu-
tion introduces new issues. Similarly, when discussing SE, the notion of time to
market is essential in addition to quality aspects. Added capabilities should be

17

positioned with such concerns to make the connection more concrete with the
discipline and overall stakeholders.

From experience with SysML and FMI, we observe that the technology is
situated between development areas, such as system architecture and system
verification. In this case, the value can often be more easily seen from one
side than the other. For system architects, the motivation is relatively straight-
forward, and SysML maps well to black-box simulation models. For system
verification engineers or simulation experts, the value is often less clear when
introducing languages like SysML into their workflow. Overall it might, in the
end, be a valuable effort from an organisational standpoint. However, technolo-
gies that bridge gaps between disciplines require mutual effort, and there is a
perceived reluctance from simulation experts to move higher in abstraction in
the typical SE flow as they might not see the impact on their processes. A
related topic is the cost of supporting co-simulation via FMI. As the models
are viewed as black-box, there must be high confidence in the model’s validity.
Also, there are costs associated with managing FMI-supported model libraries,
and suitable models for a given context must be selected for each case. Addi-
tionally, tooling support is expected for the SysML to FMI bridge, preferably
via seamless automated integration. Such infrastructure is not trivial and will
likely add considerable costs in larger industrial contexts. It should be clear
what is expected of such surrounding infrastructure and how that factors into
the overall value proposition of the technologies, which is often omitted when
considering MBSE topics at large.

Henderson et al. provide an initial work towards metrics for MBSE and the
more comprehensive Digital Engineering (DE) landscapes [16]. In particular,
based on previous work, the authors argue that MBSE lacks empirical metrics
and extracts preliminary metrics from a systematic literature review. The pre-
liminary metrics are further analysed with MBSE and DE experts to understand
the more important categories. The authors conclude by identifying metrics for
each of the five success areas of DE, Quality (System quality, Defects), User Ex-
perience (System understanding, Effort), Velocity/agility (Time, Rework, Ease
of making changes), Knowledge Transfer (Accessibility of information, Collab-
oration), and Adoption (Project methods/processes, Use of DE/MBSE tools).
At a glance, the areas and corresponding metrics seem to apply to the paper’s
context. Future work could, as such, aim to move towards implementing metrics
and pave the way for a more systematic approach to MBSE.

Highlight and summary

The value of introducing the co-simulation capability in MBSE flows is not
explicit and hinders rigorous examination while introducing reluctance for
adoption. A necessary step for reasoning in this context is the definition of
key metrics and costs associated with the technology and the consequent
analysis of the implementation effects.

18

5 Discussion

The motivation and subsequent implementation of the FMI standard in the
industry are seen as a valuable effort for the SE community and promote the
broader adoption of simulation capabilities. This paper highlights that while
the technology is seeing extensive adoption and excitement, it still requires sig-
nificant work to become a robust part of SE adoption. The standard is seeing
significant changes with the FMI 3 version, which promises to solve some iden-
tified problems while optimising it overall. Future developments are bound to
have similar positive effects, and overall the FMI standard is a step in the right
direction to increase interoperability and re-use of models. Many industrial
players actively support the standard, and the tool agnostic coupling of mod-
els is valuable even with the current barriers observed. It is also important
to highlight that we situate these barriers in the context of SE, meaning that
our observations and experience depend on this assumption. Many of the suc-
cess stories of FMI come from more simulation-oriented contexts, where most
SE concerns are absent or significantly reduced. Furthermore, we have assumed
that using MBSE implicitly corresponds to SysML models. While this is a sound
assumption, the new SysML V2 standard11 is bound to impact how MBSE is
implemented. The new standard has yet to be widely adopted by industrial
tools, which limits industrial usage. However, once SysML V2 becomes a more
supported standard, it could significantly impact how models are represented
due to the difference in the underlying kernel and largely textually-based lan-
guage.

This paper generally presents issues that stem from a clash of abstraction,
workflow, and engineering responsibilities. The observed context requires engi-
neering roles to ”meet in the middle” in separate processes to boost developmen-
tal capabilities. An often necessary condition in this regard is consistency man-
agement between the corresponding models at the different abstraction levels.
Without maintaining consistency between the artefacts, the activities quickly
run the risk of creating inconsistent models, particularly as the level of abstrac-
tion is different. Indeed, consistency management between sources of informa-
tion with vastly different detail and scope is a challenge in itself, reported in
literature [19]. In addition to consistency issues, there are challenges related to
providing adequate simulation models for the early stage. To correctly leverage
simulation for analytical purposes, there is a fine line to thread with the use
of abstraction to find a suitable trade-off between model detail and the even-
tual results of the simulation. The issue is tightly coupled to uncertainty and
how it should be addressed effectively [7]. Indeed, one could argue that this is
the central issue to be addressed, how abstraction should be utilised to enable
simulation while preserving meaningful simulation capabilities. The inherent
uncertainty requires understanding what can reasonably be extracted from the
simulation created at these stages, regardless of the validity of employed simu-
lation models.

11https://www.omgsysml.org/SysML-2.htm

19

6 Conclusion

This paper has described the context and motivation for integrating Co-simulation
in MBSE processes. Value is expected through increased collaboration oppor-
tunities and a move towards a more mature automated digital thread. In par-
ticular, simulation is a capability that can provide more knowledge of a system
at earlier stages of development, and the FMI standard is an enabler due to
the abstract black box representation of simulation models in an interopera-
ble format. However, several practical barriers are inhibiting the adoption of
standards like FMI, particularly from an industrial perspective, presented in
the paper. The barriers are summarized into four high-level categories of con-
cerns, i) Leveraging FMI, ii) Automation, iii) Integration in SE workflows, and
iv) Value demonstration. We exemplify the barrier from industrial experience
working in the paper context for each category. Furthermore, we discuss each
topic, provide a summary, and highlight to promote future research to reach a
more mature technological readiness for industrial use.

Future work could be more organized feedback from the industry in concrete
terms towards the discussed issues to enable joint industry-academia collabora-
tion, not only on the technical level of the FMI standard but also in the large
SE landscape. A typical pattern for the gaps identified is the lack of rigorous
evaluation and a missing unified view of the topics. The authors are working
on industrial projects that integrate FMI for analytical purposes and aim to
work towards, at least partially, the challenges presented in this paper from the
MBSE perspective.

References

[1] K. Abdo, J. Broehan, and F. Thielecke, “A seamless and end-to-end ap-
proach for early and continuous validation of next-generation avionics plat-
forms,” in Software Engineering 2023 Workshops, 2023.

[2] M. Arnold, C. Clauß, and T. Schierz, “Error analysis and error estimates
for co-simulation in fmi for model exchange and co-simulation v2. 0,” in
Progress in Differential-Algebraic Equations: Deskriptor 2013. Springer,
2014, pp. 107–125.

[3] M. Ben Ayed, A. Massaoudi, S. A. Alshaya, and M. Abid, “System-level
co-simulation for embedded systems,” AIP Adv., vol. 10, no. 3, 2020.

[4] J. Bergelin and A. Cicchetti, “Towards continuous modelling to enable de-
vops: a preliminary study with practitioners,” in Proceedings of the 25th
International Conference on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings, 2022, pp. 774–783.

[5] C. Bertsch, E. Ahle, and U. Schulmeister, “The functional mockup
interface-seen from an industrial perspective,” in Proceedings of the 10th

20

International Modelica Conference; March 10-12; 2014; Lund; Sweden, no.
096. Linköping University Electronic Press, 2014, pp. 27–33.

[6] D. Bilic, D. Sundmark, W. Afzal, P. Wallin, A. Causevic, C. Amlinger, and
D. Barkah, “Towards a model-driven product line engineering process: An
industrial case study,” in Proceedings of the 13th Innovations in Software
Engineering Conference on Formerly known as India Software Engineering
Conference, 2020, pp. 1–11.

[7] L. Burgueño, P. Munoz, R. Clarisó, J. Cabot, S. Gérard, and A. Vallecillo,
“Dealing with belief uncertainty in domain models,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 2, pp. 1–34, 2023.

[8] K. X. Campo, T. Teper, C. E. Eaton, A. M. Shipman, and M. B. Bhatia,
Garima, “Model-based systems engineering: Evaluating perceived value,
metrics, and evidence through literature,” Systems Engineering, 2022.

[9] P. De Saqui-Sannes, R. A. Vingerhoeds, C. Garion, and X. Thirioux, “A
taxonomy of mbse approaches by languages, tools and methods,” IEEE
Access, 2022.

[10] E. Durling, E. Palmkvist, and M. Henningsson, “Fmi and ip protection of
models: A survey of use cases and support in the standard.” in Modelica,
2017, pp. 132–036.

[11] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee Soft-
ware, vol. 33, no. 3, pp. 94–100, 2016.

[12] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014.

[13] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-
simulation: State of the art,” arXiv preprint arXiv:1702.00686, 2017.

[14] J. Gregory, L. Berthoud, T. Tryfonas, A. Rossignol, and L. Faure, “The long
and winding road: Mbse adoption for functional avionics of spacecraft,”
Journal of Systems and Software, vol. 160, p. 110453, 2020.

[15] R. Hällqvist, R. Braun, and P. Krus, “Early insights on fmi-based co-
simulation of aircraft vehicle systems,” in 15:th Scandinavian International
Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden, vol. 144.
Linköping University Electronic Press, 2017, pp. 262–270.

[16] K. Henderson, T. McDermott, E. Van Aken, and A. Salado, “Towards
developing metrics to evaluate digital engineering,” Systems Engineering,
vol. 26, no. 1, pp. 3–31, 2023.

[17] K. Henderson and A. Salado, “Value and benefits of model-based systems
engineering (mbse): Evidence from the literature,” Systems Engineering,
vol. 24, no. 1, pp. 51–66, 2021.

21

[18] Y. Hirano, J. Ichihara, H. Saito, Y. Ogata, T. Sekisue, and S. Koike, “To-
ward the actual model exchange using fmi in practical use cases in japanese
automotive industry,” 2019.

[19] R. Jongeling, F. Ciccozzi, J. Carlson, and A. Cicchetti, “Consistency man-
agement in industrial continuous model-based development settings: a re-
ality check,” Software and Systems Modeling, vol. 21, no. 4, pp. 1511–1530,
2022.

[20] A. Junghanns, C. Gomes, C. Schulze, K. Schuch, R. Pierre, M. Blaesken,
I. Zacharias, A. Pillekeit, K. Wernersson, T. Sommer et al., “The functional
mock-up interface 3.0-new features enabling new applications,” in Modelica
Conferences, 2021, pp. 17–26.

[21] E. A. Lee and M. Sirjani, “What good are models?” in International Con-
ference on Formal Aspects of Component Software. Springer, 2018, pp.
3–31.

[22] C. M. Legaard, D. Tola, T. Schranz, H. D. Macedo, and P. G. Larsen,
“A universal mechanism for implementing functional mock-up units,” in
11th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications, ser. SIMULTECH 2021, 2021.

[23] A. M. Madni and M. Sievers, “Model-based systems engineering: Moti-
vation, current status, and research opportunities,” Systems Engineering,
vol. 21, no. 3, pp. 172–190, 2018.

[24] T. Mens, “On the complexity of software systems,” Computer, vol. 45,
no. 08, pp. 79–81, 2012.

[25] R. Mikelöv and A. Bergsten, “Evaluating the reliability of fmi co-simulation
for validation,” 2023.

[26] A. Morkevicius, A. Aleksandraviciene, and Z. Strolia, “System verifica-
tion and validation approach using the magicgrid framework,” INSIGHT,
vol. 26, no. 1, pp. 51–59, 2023.

[27] C. Nigischer, S. Bougain, R. Riegler, H. P. Stanek, and M. Grafinger,
“Multi-domain simulation utilizing sysml: state of the art and future per-
spectives,” Procedia CIRP, vol. 100, pp. 319–324, 2021.

[28] M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnos-
topoulos, “Simulating sysml models: Overview and challenges,” in 10th
System of Systems Engineering Conference. IEEE, 2015, pp. 328–333.

[29] G. Schweiger, C. Gomes, G. Engel, I. Hafner, J.-P. Schoeggl, A. Posch, and
T. Nouidui, “Functional mock-up interface: An empirical survey identifies
research challenges and current barriers,” in Linköping electronic conference
proceedings, vol. 154, 2018, p. 15.

22

[30] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical systems,”
in 2011 international conference on wireless communications and signal
processing (WCSP). IEEE, 2011, pp. 1–6.

[31] V. Singh and K. E. Willcox, “Engineering design with digital thread,”
AIAA Journal, vol. 56, no. 11, pp. 4515–4528, 2018.

[32] J. Suryadevara and S. Tiwari, “Adopting mbse in construction equipment
industry: An experience report,” in 2018 25th Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, 2018, pp. 512–521.

[33] A. Vogelsang, T. Amorim, F. Pudlitz, P. Gersing, and J. Philipps, “Should
i stay or should i go? on forces that drive and prevent mbse adoption in
the embedded systems industry,” in Product-Focused Software Process Im-
provement: 18th International Conference, Innsbruck, Austria, November
29–December 1, 2017. Springer, 2017, pp. 182–198.

[34] D. D. Walden et al., “Systems engineering handbook: A guide for system
life cycle processes and activities,” 2015.

[35] A. W. Wymore, Model-based systems engineering. CRC press, 2018, vol. 3.

23

	Introduction
	Background and related work
	Industry motivation and case
	Adoption barriers
	Integration in SE workflows
	Leveraging FMI for simulation
	Automation
	Value demonstration

	Discussion
	Conclusion

