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Abstract—System memory errors have always been problem-
atic; today, they cause more than forty percent of confirmed
hardware errors in repair centers for both data centers and
telecommunications network nodes. Therefore, it is somewhat
expected that, in recent years, device manufacturers improved
the hardware features to support hardware-assisted fault man-
agement implementation. For example, the new standard, DDR5,
includes both data redundancy, the so-called Error Correcting
Code (ECC), and physical redundancy, the post-package repair
(PPR), as mandatory features. Production and repair centers
mainly use physical redundancy to replace faulty memory rows.
In contrast, field use still needs to be improved, mainly due to
a need for integrated system solutions for network nodes. This
paper aims to compensate for this shortcoming and presents
a system solution for handling memory errors. It is a multi-
technology proposition (mixed use of ECC and PPR) based on
multi-layer (hardware, firmware, and software) error information
exchange.

Index Terms—Memory Faults, Fault Management, Post-
Package Repair, Error Correcting Code, Run Time Fault Re-
covering

I. INTRODUCTION

Miniaturization of hardware components and higher density
of transistors per component has enabled significant gains in

Acronym Explanation
BIST Build-in Self-Test
CAE CorrectAble Error
CE Corrected Error
ECC Error Correcting Code
hPPR Hard PPR, permanent PPR
MBIST memory BIST
mPPR MBIST PPR, available in BIST mode
PRR Post Package Repair, row swap memory device capability
sPPR Soft PPR, temporary PPR
UCE UnCorrectable Error

TABLE I
ACRONYM TABLE
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Fig. 1. Fault ranking in a telecom node

performance, energy efficiency, and product cost [1]. Unfortu-
nately, the miniaturization process compromises the reliability
of the integrated circuits. The leading cause of this reliability
loss is that the nanoscale technology has reduced the critical
charge required for a logic-level switch in the device [2]. The
stringent limits on power consumption, and the consequent
voltage reduction, has lead to an increase in error probability.
The most significant risk is data corruption. As a consequence
of higher probability of data corruption, memory devices in
networking nodes are the most prone to hardware errors [3].
Fig. 1 (fault ranking statistics for telecommunication nodes)
and Fig. 2 (fault ranking statistics for data center nodes [3])
show how memory devices are the primary source of hardware
errors.

DDR5 memories are an excellent example of how hardware
component manufacturers are well aware of the decreased reli-
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ability of the device. One of the main objectives of the DDR5
specification is to increase reliability using error detection and
correction techniques [4]. The DDR5 specification includes
two particularly interesting techniques: the extension of data
redundancy with the introduction of on-die Error Correcting
Code (ECC) and the extension of physical redundancy with
the mandatory implementation of Post-Package Repair (PPR).
ECC is an excellent mechanism that can both detect and cor-
rect memory errors during runtime, while PPR is an excellent
instrument for recovering from a faulty memory area. The
new system memory technology confirms the trend towards
hardware miniaturization: DDR5 devices, with a higher tran-
sistor density than the previous DDR4, are increasingly used
to count on more capacity and more outstanding performance
(see Table II).

A previous work [6] designed a multi-layer and multi-
technology fault management approach to increase product
resiliency. The central concept is managing a fault recovery
through all four layers of a networking system (hardware,
firmware, software, and control system), each using the avail-
able recovery technologies for it and interchanging data with
the other layers. The proposed fault management approach is
a valuable framework to handle the system memory faulty
condition too.

Features DDR4 DDR5
Speed 1.6 to 3.2 GT/s 4.4 to 6.4 GT/s
Clock 0.8 to 1.6 GHz 2.2 to 3.8 GHz
IO Voltage 1.2V 1.1V
Power Management On Motherboard On DIMM PMIC

(Power Management IC)
Max. Die Density 16Gb 64Gb
ECC-on-die NO YES
PPR Optional Mandatory

TABLE II
FEATURES COMPARISON: DDR4 VS DDR5. [4], [5]

Paper Contribution

This paper describes a novel methodology for fault analysis
and correction in system memory based on multiple redun-
dancy techniques. The proposed method is deploying the fault
management multi-layer framework in both hard and soft error
based on multi-technology interwork: data (ECC) and physical
(PPR) redundancies.

II. DEFINITIONS

This section recalls a set of definitions and concepts for
the reader. These definitions differ slightly in standardization
references based on the field of interest (automotive, nuclear,
avionics, etc.).

Definition 1: ECC stands for Error Correcting Code. It is
an algorithm introduced by Hamming [7]. The algorithm in-
troduces a few extra bits to encode data information. Decoding
those redundancy bits allows for detecting a limited number
of errors.

Definition 2: on-die ECC is an implementation scheme
for the ECC algorithm. On a write command, DRAM device
computes ECC internally and stores the ECC code in addi-
tional reserved storage. On a read command, DRAM device
reads back ECC code and can correct any single-bit error. By
definition, on-die ECC doesn’t provide any protection against
error in the memory bus. It is available for DDR5 only [8].

Definition 3: side-band ECC is an implementation scheme
for ECC algorithm. The Memory controller generates, writes,
and reads the ECC code side-band along with the actual data
to the memory. It is available for DDR4 and DDR5 [8].

Definition 4: patrol scrub ECC is a deterministic fault-
tolerance technique that regularly repairs each faulty memory
location at intervals to prevent memory from accumulating a
second error in a single word. Consequently, the likelihood of
uncorrectable error due to soft error remains as low as possible.
[9].

Definition 5: PPR stands for Post-Package Repair. It is a
standard industrial capability defined by JEDEC [5]. It allows
swapping degraded memory rows with spare one per bank
group.

Definition 6: mPPR stands for MBIST PPR. It is a dedicated
set of memory rows, separated by standard PPR ones that
Built-in Self-Test can use to swap degraded memory rows
during the Advanced Memory Test execution [4]. This feature
depends on the vendor solution because it is still optional in
DDR5. It is not available in DDR4.

Definition 7: sPPR stands for Soft PPR. It is a temporary
post-package repair, volatile to power cycling [10].

Definition 8: hPPR stands for Hard PPR. It is a permanent
post-package repair, nonvolatile to power cycling [10].

Definition 9: A Corrected error (CE) is a fault detected,
located, and corrected within a single layer [11]. ECC-Single-
error-correction is an example of algorithm able to detect,
locate and correct a bit-flip in memory.

Definition 10: A Correctable error (CAE) is a fault detected
and located by a layer but evaluated as correctable by a



different layer performing one or multiple actions to recover
the fault [11]. ECC-Single-Error-Detection is an example.

Definition 11: A Uncorrectable error (UCE) is a fault
detected and located by a layer and not recognized as cor-
rectable [11]. ECC-Double-Error-Detection is an example.

Definition 12: A Hard Error in memory is single or
multiple bits permanently stacked on a voltage level [12].
An electrostatic discharge (ESD), an electrical over-current or
over-temperature condition, or fabrication or module assembly
irregularities can cause a hard error.

Definition 13: A Soft Error in memory is single or multiple
bits temporally flipped [12]. An electrical disturbance, high-
energy particle strikes, or electrical noise in the circuits can
cause a soft error. It is helpful to mention the so-called
”rowhammer effect”, a charge disturbance between cells in
the high-dense memory circuits.

Definition 14: BIST stands for Built-in Self-Test. It is a
device feature that consists of internal test execution without
the need for an external tester [13]. It is called MBIST When
the target of the self-test is the memory device(s) [14].

III. RELATED WORKS

The introduction of new hardware-assisted fault
management features has increased interest in the benefits
and use of these redundancy techniques. For example, Cha et
al. [1] and Khan et al. [2] investigated the negative effect of the
device miniaturization and the importance of data redundancy
to detect and correct the soft error in run-time. Other
researchers also analyzed physical redundancy techniques
and their integration in the Self-Test procedure (BIST) as
hard error recovery mechanisms [15]. Jeddeloh [16] proposed
a mechanism based on the error memory map concept,
while Wada et al. [15] and Querbach et al. [17] focused
on PPR integration in the BIST. Lee et al. [18] used the
content-addressable memories method in hybrid with ECC to
implement self-repair. However, since the PPR begins to be
a mandatory feature with DDR5 technology, a more efficient
solution should consider the integration between ECC and
PPR. Lu et al. [19] and Manasa et al. [20] proposed a method
to integrate PPR and ECC in production tests, while Kim
and Milor [21], [22] represented the first attempt to integrate
ECC and PPR in run time. All the solutions mentioned above
have two critical problems: they require a modification of the

Fig. 3. The Resilience Triangle

memory device to determine the ”hard” or ”soft” nature of
the error, and they always execute some device’s commands
for verifying the type of error, which implies a long execution
time because the verification is done every time, even when
not necessary. A multi-layer solution overcomes those critical
issues. Chao et al. [23] foresee that the BIOS analyzes the
memory state and uses the PPR to ban defective raws from
being communicated to the OS to form the memory maps.
The problem with this solution is the one-way communication
which requires the execution of advanced memory tests at
each boot, with longer restart times, by a magnitude of several
minutes. Four patents aim to provide efficient integration of
data and physical redundancy features in run-time. Pope [24]
proposed to identify the nature of the memory error during
the ECC exception handling and, if necessary, correct it
via PPR. He suggested running the memory test and swap
execution as part of the exception handling. Consequently,
the exception time increase. A circumstance that this paper
identified as undesirable behavior for radio access boards.
Lee [25] and Muthilayu [26] proposed a similar solution: a
memory fault exception set by ECC procedure is the trigger
to migrate into BIST mode and manage PPR mechanism, But
their design also implies a too-long exception time. Zimmer’s
proposal [27] is similar to the solution of the others. Still, it
is specific to the Intel platform: it suggests the transition from
OS to System Management Mode (SMM), typical of the x86
platform. It also inherits the longer exception handling time.
Both Pope [24] and Muthilayu [26] mentioned the exchange
of error information between software and firmware, even if
they miss to clarify the terms and scope of this exchange of
information.

The paper proposal, as described in Section V, is a valid
alternative to previously proposed memory error recovering
procedures when long times for the exception are more prob-
lematic than a controlled restart of the board.

IV. RESEARCH DESCRIPTION

A. Research Objective

The research aims to integrate data redundancy (ECC) and
physical redundancy (PPR) in Radio Access Network (RAN)
boards that use DDR4/DDR5 system memory devices. The
integration of the fault redundancy mechanisms mentioned
above will optimize the area of the resilience triangle [28]
by minimizing recovery times from an error condition (see
Fig. 3, the transition from a time when the fault occurs, tf , to
time when the system returns to its fully operational working
mode, tr).

Minimization is possible by interworking the different layers
(hardware, firmware, software, and control system). Each layer
performs its recovery attempt and, in case of success, com-
pletes the recovery procedure immediately, without invoking
the higher layer if not necessary. Consequently, the system
returns to the fully working operational mode in a time that can
be lower than or equal to the time spent by the control system
alone to recover from the fault. Since any layer passes the



outcome of the recovery action to that above, implementing the
recovery mechanism per layer is minimal and optimal because
there is no need to duplicate a procedure that a lower layer has
performed already (and that a higher layer will then execute).

B. Context Description

The paper analyzes the management of system memory
faults in the hardware infrastructure of networking embed-
ded systems. More specifically, the study focuses on system
memory fault in infrastructure for 5G networks [29] and
beyond [30]. There are some characteristics of 5G network
RAN nodes that are relevant to this paper:

• For cost optimization reasons, a 5G RAN node usually
has limited storage availability, which could reduce the
data collection capability.

• The very strict requirement of the fronthaul latency [31]
for functional splitting [32] limits the computing resource
available for data handling.

• 5G RAN nodes are interconnected to other network func-
tions and entities in a service-based interface scenario.
The exception time needs to be limited, or it would cause
a reaction from the access and mobility management
function [33].

Fig. 4 depicts a high-level infrastructure view of a typical
5g compute node, which we call ”reference architecture”. We
describe the different components of the reference architecture
in detail as follows:

• A host system that contains:
– a processing unit capable of running firmware and

software;
– a memory controller that executes PPR logic, the

side-band ECC, and the access logic to the memory
device.

• A memory subsystem:
– a memory controller, if not already supported by the

host system and with the features already described
for the host system;

– a memory device with support for PPR (mandatory)
and on-die ECC (optional, not directly required by

Fig. 4. The System architecture

our method, but helpful in keeping the probability of
a soft error low);

– a persistent memory area where to store the inter-
work data.

V. MEMORY ERROR HANDLING PROCESS

Firmware and software work in collaboration to obtain
efficient memory error handling. The former manages the
physical redundancy, the latter the data redundancy, and they
share ECC error and PPR availability information using a
persistent memory area that survives a processor restart (inter-
work data area). Software and firmware can also access
another persistent memory area to log the system’s hardware
errors. Both firmware and software know about restart type;
that is, they can recognize a board power-on. In the inter-
work data area, firmware creates and initializes two structures,
PPR INFO and ECC INFO, at a board power-on. The PPR
INFO contains the total number of hPPRs available in the
system and the number of hPPRs currently in use. The ECC
INFO includes a list of ECC faulty events, where each event
contains the location (memory address where ECC detects an
error), persistence level, and the number of occurrences of that
specific error message.

A. Process in the Software Domain

Fig. 5 describes the memory error handling flow in the soft-
ware domain. The software runs the ECC algorithm through
the memory controller. Parallel fault recovery mechanisms,
such as patrol scrubbing and on-die ECC, are unchanged and
are strongly recommended as a method of immediate detection
and correction of a soft error. When the ECC algorithm detects
an error indication, the error handling process analyzes the
typology. No other intervention is required if the hardware
can automatically correct the error. If software actions can
correct the fault, it is crucial to understand whether the suspect
memory segment belongs to data or control memory. The
software immediately carries out a write-back test in case
of data memory corruption, as the memory contents cannot
compromise the system’s integrity. In the case of control
memory, the error handling process applies the same policy
as for uncorrectable errors: software checks if a valid entry
exists in the ECC INFO table. If a non-validity entry exists,
the software will create an entry with correct validity, non-
persistence, and non-occurrence indication. If it exists, it just
increases its occurrence.

B. Process in the Firmware Domain

Fig. 6 describes the memory error handling flow in the
firmware domain. After a processor restart, the firmware
considers whether ECC error structures are available in the
ECC INFO table and evaluates for each entry the validity,
persistence, and occurrence. The firmware continues its board
initialization phase if there is no fault listed in the interwork
data area. For valid entries, the procedure processes only those
with persistence and multiple occurrences and swap to an
hPPR, if available. The procedure considers an indication as



Fig. 5. Visualization flow of the software Memory Error handling Proposal

persistent if it is present in the ECC INFO for two con-
secutive processor restarts. An indication results in multiple
occurrences if the ECC of the memory controller reports an
error on the exact location after a second processor restart.
Two cases deserve further description.

A permanent and multiple occurrences error is a ”hard
error” because, by definition, a simple write-back test cannot
work. The occurrence of a soft error on the exact memory
location, even after a processor restart, is a rare event. Critical
working conditions, such as a high-temperature condition,
insufficient power, or incorrect device initialization, are more
likely. Therefore, it is helpful to report this suspected erro-
neous environmental condition in the hardware error log.

The case where all hPPR spares are already in use should
also add an entry in the hardware error log since firmware
and software can no longer recover from the fault condition.

C. The following items listed the key features that distin-
guishes the paper proposal to other researches

.

• Memory error handling using ECC and PPR inte-
gration for radio access network boards in run-time.
The multi-technology integration allow recovery action
for memory error in case of hard error. Whenever the
software detects an uncorrectable fault, the method con-
siders that it is safer to proceed with a recovery attempt
through a processor restart. Blocking the system to handle
the exception in the firmware domain would introduce too
long times that the network node control system would
not tolerate [32], [33]. The proposed method uses other
fault management features, such as patrol scrub, on-die
ECC, and poisoning, to minimize the risk that a soft error
causes an uncorrectable fault.

• Minimal restart time. Firmware and software share
error information using interwork data. For that reason,
firmware doesn’t need to run full memory integrity test
to detect possible memory rows containing hard error
(that can takes even minutes). The firmware executes
only the bare minimum of write-back tests, exclusively
on memory rows reported as defective by the software
and only in the case of multiple error occurrences. In



Fig. 6. Visualization flow of the Firmware Memory Error handling Proposal

practice, the PPR swap procedure, the more expensive
function (in terms of execution time) is used exclusively
in the presence of a hard error.

• Integrated solution The solution is based on hardware,
firmware, and software fault management mechanisms
fully supported by the most important vendors of com-
ponents for embedded systems, which makes it attrac-
tive because the implementation doesn’t require special
hardware, hardware adapters. Moreover, the same design
cover the production test needs, avoiding the maintenance
of a separated ”production-only” software.

• Optimal usage of share resources The swap procedure
for hPPR is performed only in case of a hard error.

VI. THE PPR TECHNOLOGY USAGE IN PRODUCTION TEST

Production and repair tests are two moments of a product’s
life already using PPR technology [34]. PPR usage is possible

because the limitation described in section IV-B are valid only
in run-time. Of course, production tests can only use the PPR
function if supported by the hardware. But with the migra-
tion to the DDR5 technology (see Table II), the mandatory
availability of ECC and PPR is a concrete opportunity to
have a shared memory handling solution for all production’s
life phase (from production to run-time, from run-time to
repair center). A common procedure removes the need for ”ad
hoc” production test software, reducing development time and
maintenance costs. For this reason, it is worth analyzing how
the production test work and how it manages a memory error
condition.

The production test executes a sequence of threads called
test-case. The System memory device test-case enables the
ECC function during the read/write sequence [21], [35]. The
whole test-case seems to be very similar to the paper proposal
described in the previous sections:



Fig. 7. The Schematic PPR flow char used in Production test

• ECC enabled at the start of the test;
• When ECC detects and communicates a UCE, the error

information is stored in an area set up by the memory
controller manufacturer (Original Equipment Manufac-
turer, OEM) to manage PPR entries.

• A restart of the board is performed;
• Following the restart, the firmware extracts the error

information from the manufacturer area. It proceeds with
the swap between fault and spare PPR entries if the
memory location is still affected by an error after re-
initializing the device.

As can be easily verified by comparing the two flows (see
Fig. 5, Fig. 6 and Fig. 7), the mechanism we have defined
for the run-time contemplates and therefore replaces the PPR
implementation algorithm for the production test. With the
implementation of the hard error management algorithm in
run-time, we have uniformity in the memory error manage-
ment mechanism in all the life phases of the product, realizing
savings in development and maintenance. Since our proposal

has no dependence on the manufacturer (thanks to using the
inter-work data alternative to the OEM), it is a multi-vendors
supporting solution.

VII. CONCLUSIONS AND FUTURE WORK

The memory error handling proposed in this paper
is particularly effective for network nodes that handle a
significant amount of traffic with soft real-time requirements.
Both the observance of the deadline and the supervision of a
control system only allows a short time for the management
of exceptions, such as those associated with uncorrectable
error events in the system memory in the case of the use
of PPR in the domain of exceptions. The proposed solution
uses the processor restart to trigger the recovery action,
which also provides for the isolation of row memory in case
of a hard error and its replacement with a spare one via
PPR. For a practical limitation of the number of restarts, we
have used the ability to distinguish between data memory
and control memory. In the first case, recovery action can



change the memory context without compromising the node’s
functioning, allowing a simple test operation to verify and
remove the soft error.

However, the operating system cannot know how the ap-
plications will use memory, and this implies that effective
use of this limitation on restart numbers must be able to rely
on a different memory allocation API to allow the operating
system to distinguish between data and control areas. How to
provide and supervise data and control memory is undoubtedly
research grounds for a future study. Future work can also
look at integrating the control system to manage the degraded
function state. It is the reason why the proposal suggested
to add memory error information into the error log. Higher
layers could use this information, such as the application or
control system layer, to review the memory map and evaluate
any degraded function states. Our study is limited to the
integration between hardware, firmware, and software, while
the management of resource availability limitation requires the
involvement of the system layer.
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