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Abstract— This paper introduces a novel approach, which
we refer to as hybrid moving controller, designed to ensure
closed-loop stability while eliminating the requirement for
synchronization between the plant and control unit. In our
proposed method, the controller is time-varying and moves
the closed-loop eigenvalues along radial trajectories originating
from the origin. The sequence of controllers is assumed to be
kept confidential from potential adversaries. Given that this
moving controller renders the overall closed-loop system time-
varying, maintaining the eigenvalues within the unit circle alone
is insufficient to guarantee stability. As a result, we explore
stability through the lens of contraction theory and present
criteria for the sequence of controllers to ensure stability.

I. INTRODUCTION

Cyber-physical systems (CPS) play a pivotal role in our
modern lives, seamlessly integrating the digital and physical
worlds to enhance efficiency, safety, and convenience across
various domains. These systems, which combine computer-
based intelligence with physical processes, are at the heart
of numerous critical applications, and their importance con-
tinues to grow. In the realm of transportation, CPS enables
autonomous vehicles that promise safer and more efficient
travel [1]. They optimize traffic flow [2] and decrease
fuel consumption [3]. In healthcare, CPS assists in remote
patient monitoring and developing smart medical devices,
revolutionizing healthcare delivery and patient outcomes [4].
In power grids, CPS has numerous applications in demand
response [5], integration of renewable energy resources [6],
and energy storage management [7], [8].

Alongside the numerous advantages CPSs can bring our
lives, they are more vulnerable to cyberattacks than their
traditional counterparts. This increased vulnerability arises
from CPSs typically consisting of many heterogeneous com-
ponents that need to communicate and collaborate. We can
highlight several notable examples of cyberattacks on real-
world CPSs, including Stuxnet [9], which targeted Iran’s
nuclear enrichment facilities; BlackEnergy [10], which aimed
at Ukraine’s power grid; and Trisis [10], which attacked a
petrochemical plant in Saudi Arabia.

A crucial step in safeguarding CPSs against cyberattacks
is intrusion detection. The goal of this phase is to detect
anomalous behaviors in the system that may have occurred
as a result of a cyberattack. Traditional methods for intrusion
detection include physical watermarking [11], in which the
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defender intentionally modifies the control inputs to generate
authentication perturbations, AI-based intrusion detectors
[12], and encryption [13].

In addition to the mentioned approaches, Moving Target
Defense has recently attracted significant attention in the re-
search community. This intrusion detection method was ini-
tially introduced in [14] and subsequently expanded upon in
additional studies [15], [16], [17]. In the context of moving-
target, the defender introduces dynamic changes within the
control system by incorporating time-varying parameters.
These parameters are known to the defender but remain
unknown to the attacker. The dynamic variations over time
act as a moving target, changing rapidly enough to hinder
potential adaptive adversaries from effectively identifying
the system. Implementing the moving target approach in
practical applications such as power grids [18] has shown
promising results. Therefore, it seems beneficial to delve
into more details and explore opportunities for possible
improvements.

One of the primary practical concerns when implementing
moving target defense is closed-loop stability. In control the-
ory, achieving closed-loop stability at each time step does not
guarantee overall stability in a time-varying discrete system.
Specifically, unpredictable or erratic changes in closed-loop
eigenvalues can lead to instability. However, in the context of
moving target defense, we desire unpredictable behavior in
the closed-loop poles. This is because we want the moving
target to avoid following a consistent pattern that could be
learned and predicted by potential attackers. In this article,
our objective is to outline a method for selecting closed-
loop pole locations that ensure system stability, regardless of
the irregular switching in the hybrid moving target defense
strategy.

Another barrier to the practical implementation of hybrid
moving target defense is the need for synchronization be-
tween the plant and intrusion detection units. This paper
investigates the possibility of transferring the system’s time-
varying features to the controller unit, which is typically
located in the same place as the intrusion detection unit.
This significantly improves the convenience and reliability
of synchronization in practical applications.

A. Statement of Contributions

In summary, this article’s main contributions include:
• Introduction of a modified moving target defense with

stability guarantees.
• Proposal of a restructured format for implementing

hybrid moving target defense, which is called hybrid



moving controller in this paper, removing the necessity
for synchronization between the plant and the control
center.

B. Organization

Section II reviews the basic structure of the hybrid
moving-target approach. The hybrid moving controller ap-
proach is presented in Section III. Section IV provides the
stability analysis of moving controller defense, and finally,
concluding remarks are provided in Section V.

C. Notation

Throughout this paper, we use the symbols N, R and C
to represent the sets of integers, real numbers, and complex
numbers respectively. Scalars are denoted as x, while x and
X represent a (column) vector and a matrix, respectively.
Additionally, Ii represents the i × i identity matrix, Acf

i

denotes an i × i square matrix in companion form, and
eji is a j × 1 unit elementary vector with a 1 in the i-th
row. The symbol ∗ denotes arbitrary vectors or matrices.
For instance, ∗, ∗i, and ∗i×j represent a scalar, a i × 1
vector, and a i× j matrix with arbitrary values, respectively.
0i×j and 1i×j represent all-zeros and all-ones matrices,
respectively. 0i and 1i represent all-zeros and all-ones i× 1
vectors. Finally sets are denoted by uppercase letters, e.g.,
X , and diag{x1, . . . , xn} denotes a diagonal matrix with the
elements x1, . . . , xn on its diagonal.

II. REVIEW OF PREVIOUS STUDIES

This section reviews the basic concept of hybrid moving
target defense introduced in [16], [17]. Consider that the
dynamics of the plant under control can be modeled as a
linear time-invariant (LTI) system, as follows:

xk+1 = Axk +Buk + ωk

yk = Cxk + νk
, (1)

where k ∈ N is the index for numbering samples, x ∈ Rn is
the state, u ∈ Rm represents the input, and y ∈ Rp denote
the output of the system. Furthermore, ω ∼ N (0,N) and
ν ∼ N (0,Q) are independent and identically distributed
(i.i.d) Gaussian process and sensor noise, respectively. We
assume that (A,B) and (A,Q

1
2 ) are stabilizable, (A,C) is

detectable, and N ≻ 0.
In the hybrid moving target approach, we consider that the

adversary has detailed system knowledge and can perform
integrity attacks and manipulate all outputs. However, the
input signals are assumed to be trustworthy. Therefore, (1)
is reshaped after an attack as follows:

xk+1 = Axk +Buk + ωk

yA
k = Cxk +Ddk + νk

. (2)

In (2), the term Dd(k) models the attack. When D =
Ip, it implies that the transmitted data of all sensors can
be manipulated by adding the respective index of d(k).
Therefore, if sensor i is trustworthy, the ith row of D will

consist of all zeros. Furthermore, y(k) is changed to yA(k)
to clarify that the adversary manipulates the output.

The central concept of the hybrid moving target approach
involves dynamically altering the system matrices over time.
This sequence of time-varying matrices is assumed to be
accessible to the intrusion detection unit while remaining
concealed from potential attackers. In other words, the sys-
tem dynamics can be expressed as follows:

xk+1 = Akxk +Bkuk + ωk

yk = Ckxk + νk
. (3)

Here, the matrices (Ak,Bk,Ck) belong to a set denoted
as Γ = {(A1,B1,C1), . . . , (Al,Bl,Cl)}. While Γ may be
known to potential adversaries, the specific realizations of
these system matrices remain undisclosed. Let us denote the
information available to the defender and the attacker at time
step k as ΨD

k and ΨA
k , respectively. In summary

ΨD
k = {A{0:k},B{0:k},C{0:k},u{0:k},y

A
{0:k}, f(ωk, νk)},

ΨA
k = {Γ,u{0:k},y

A
{0:k},Dd{0:k}, f(ωk, νk)}.

(4)

As discussed in [16], [17], first, we need to perform a
posteriori state estimation and subsequently compute the
bias in the normalized residues, denoted as ∆rk. Since the
objective in [16], [17] is to identify malicious sensors, which
is independent of the control input, the authors disregard the
control input and let Bk be constant. Therefore, (2) in the
deterministic case can be rewritten as

xk+1 = Akxk,

yA
k = Ckxk +Ddk

. (5)

Let Λi be the set that contains all eigenvalues of Ai. It is
proved in [16], [17] that the following design recommenda-
tions,

• ∀i, j ∈ {1, . . . , l}, Λi ∩ Λj = ∅.
• The system matrices (Ak,Ck) are periodically change

after every κ ≥ 2n time steps.
• Let {lk} be a sequence where lk ∈ {1, . . . , l}. Let qk

denote the indices of a sub-sequence, then

Pr ((Aqk,Cqk) = (Alk,Clk),∀k) = 0.

• the pair (Ai,Ci) is observable for all i ∈ {1, . . . , l}.
• For all i ∈ {1, . . . , l}, 0 /∈ Λi.

when fulfilled, the bias in the residues grows unbounded in
the event of an attack. Therefore, anomalies can be detected
by monitoring the value of ∆r(k). Fig. 1 illustrates the block
diagram depicting the implementation of a hybrid moving
target approach within the framework of a CPS.

III. HYBRID MOVING CONTROLLER

As discussed in Section I, stability guarantees and syn-
chronization are primary concerns in the practical imple-
mentation of hybrid moving target defense. To address these
concerns, inspired by radial pole path (RPP) results in
variable structure control [19], [20], [21], [22], we aim to
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Fig. 1. Block diagram of hybrid moving target implementation on CPS.

design a controller that randomly moves the closed-loop
poles on radial paths. Subsequently, we shall guarantee the
stability of the time-varying system using the contraction
theory. To achieve this goal, we begin by pole placement in
multi-input multi-output (MIMO) LTI systems.

A. Pole Placement in MIMO LTI Systems

To continue our mathematical treatments, we need to
impose the following assumption.

Assumption 1: The LTI system introduced in (1) is con-
trollable and transformable to Frobenius canonical form. ■

By Assumption 1, (1) can be transformed to Frobenius
canonical form as:

zk+1 = AF zk +BFuk + ωF
k , (6)

where

AF = Q−1AQ =

Acf
µ1

0(µ1−1)×µ2

∗1×µ2

. . .
0(µ1−1)×µm

∗1×µm

0(µ2−1)×µ1

∗1×µ1

Acf
µ2

. . .
0(µ2−1)×µm

∗1×µm

...
...

. . .
...

0(µm−1)×µ1

∗1×µ1

0(µm−1)×µ2

∗1×µ2

. . . Acf
µm


,

(7)

BF = Q−1B =


eµ1
µ1

0(µ1−1)

∗ . . .
0(µ1−1)

∗

0µ2
eµ2
µ2

. . .
0(µ2−1)

∗
...

...
. . .

...
0µm

0µm
. . . eµm

µm


,

(8)

µi denotes the controllability index corresponding to the i-
th column of B, Q is the transformation matrix, and the

other parameters are as introduced in Section I-C. We aim
to design a state feedback controller denoted as K. This
matrix will be employed in the closed-loop system defined
by zk+1 = Aczk, where Ac = AF + BFK. The goal
is to ensure this closed-loop system exhibits the desired
characteristic polynomial.

Let us define the controllability matrix by

R=
[
bF
1 ,A

FbF
1 ,. . .,(A

F)µ1−1bF
1 ,. . .,b

F
m,. . .,(AF)µm−1bF

m

]
,

(9)
where bF

i represents the i-th column of BF . In addition, let

qd = enwd

⊺R−1, wd =

d∑
i=1

µi, d = 1, . . . ,m. (10)

Then the matrices AF and BF can be partitioned as [23]:

AF = AP0 +AP1(AP2 −AP3), (11)

BF = AP1BP1 , (12)

where AP0 ∈ Rn×n, AP1 ∈ Rn×m, AP2 ∈ Rm×n , AP3 ∈
Rm×n, and BP1 ∈ Rm×m are

AP0 =

[
0(n−1) In−1

01×n

]
, (13)

AP1 = diag{eµ1
µ1
, eµ2

µ2
, . . . , eµm

µm
}, (14)

AP2 =

α1

...
αm

 , αi = qi

(
AF

)µi
, (15)

AP3 =

[
0(m−1), DE, 0(m−1)×(µm−1)

01×n

]
, (16)

where
DE = diag{eµ1

µ1

⊺, . . . , eµm−1
µm−1

⊺
}, (17)
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Fig. 2. A sample of radial pole paths in a third-order system (v2 < v1).

and finally

BP1 =

β1

...
βm

 , βi = qi

(
AF

)µi−1
BF , (18)

If we follow the design procedure in [23], the desirable
K is given by:

K = (BP1)−1(AP4 −AP2). (19)

There are various possible selections of AP4 that guar-
antee the location of poles at the desired locations. One
possibility is that AP4 divides the desired pole locations
among Frobenius blocks so that the largest eigenvalue lies
within the smallest block. Consider the desired characteristic
polynomial, P (z), factored into m polynomials P i(z), with
a degree of µi:

P (z) =

m∏
i=1

P i(z), (20)

P i(z) = zµi + piµi−1z
µi−1 + · · ·+ pi1z + pi0, (21)

then, if for i = 1, . . . ,m

pi =
[
pi0, pi1, . . . , piµi−2, piµi−1

]
, (22)

The following AP4 , when inserted into (19), can potentially
result in the desired closed-loop characteristic polynomial as
described in (20).

AP4 = AP3 +


−p1 01×(n−µ1)

01×µ1 −p2 01×(n−µ1−µ2)

...
. . .

...
01×(n−µm) −pm

 . (23)

By implementing the controller designed in (19), Ac =
AF + BFK will be in Frobenius canonical form where
ΛF
i = eig

(
Acf

µi

)
are the roots of P i(z).

B. Moving Controller

At this step, we assume that we are interested in adding
a parameter in our feedback controller at each time step k,
such as vk, that allows us to move the closed loop poles
along radial paths starting from the origin, as depicted in
Fig. 2. This objective can be achieved by modifying (22) as
follows [24]:

pi
vk

=
[
pi0v

−µi

k , pi1v
−(µi−1)
k , . . . , piµi−2v

−2
k , piµi−1v

−1
k

]
,

(24)
With these modifications, the state feedback controller be-
comes a function of the parameter vk, denoted as K(vk).
In this context, the value of vk plays a crucial role in
determining the precise location of the closed-loop poles.
i.e. Λi → v−1

k Λi by (24).
Taking into account (6) and the design recommendations

provided for hybrid moving target in Section II, it becomes
evident that if CF is chosen such that the pair (Ac(vk),C

F ),
where Ac(vk) = AF + BFK(vk), is observable, then all
the necessary design criteria are met. Therefore, It would
be possible to remove the requirement for synchronization
between the plant and the control center and, instead, detect
anomalies solely based on the information available at the
control center unit as depicted in Fig. 3.

The design recommendations of the hybrid moving con-
troller approach simplify the design recommendations of
hybrid moving target defense as follows.

Design Recommendations:
• Design K(vk) such that all eigenvalues of Ac(vk)

become distinct and inside the unit circle for vk = 1.
• At each time step k find vk+1 ∈

[
vmin
k+1, v

max
k+1

]
that

guarantees the stability of the system (will be discussed
in Section IV).

• The system matrices (Ac(vk),C
F ) periodically change

after every κ ≥ 2n time steps by changing vk.
• The pair (Ac(vk),C

F ) is observable.

IV. STABILITY ANALYSIS

In this section, we aim to establish guarantees for the
stability of the hybrid moving controller approach using
contraction theory [25]. First, we recall a lemma generally
proposed for nonlinear time-varying discrete systems in [26].
However, for the sake of simplicity, we have restricted it to
linear time-varying systems and expressed it in our notations.

Lemma 1: The system zk+1 = Ac(vk)zk is globally and
exponentially stable if there exists a regular map, Θk, such
that

∃β > 0, F⊺
kFk − In ≤ −βIn < 0,

where Fk = Θk+1A
c(vk)Θ

−1
k . ■

In the following Theorem, we employ Lemma 1 to es-
tablish the sufficient condition for the sequence v1:k ≜
{v1, . . . , vk} to ensure system stability using contraction
theory.

Theorem 1: Assume that all eigenvalues of Ac(vk) are
distinct and inside the unit circle for vk = 1, and v1 ≥ 1.
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Fig. 3. Block diagram of hybrid moving controller.

Then if

∀k ≥ 2,


vk ≥ 1, and,

v−1
k

(
vk+1

vk−1

)(n−1)

≤ 1,

then the closed loop dynamic zk+1 = Ac(vk)zk is globally
and exponentially stable, when Ac(vk) = AF + BFK(vk)
and K(vk) is design as discussed in Section III. ■

Proof: First, assume that Λ = {λ1, . . . , λn} represents
the set of all distinct eigenvalues of the system, Ac(vk),
when vk = 1. We can assume this system is represented
in canonical controllable form. Recall from linear control
theory that when a system is in canonical controllable form,
T ∈ Cn×n defined by:

T =


1 1 . . . 1
λ1 λ2 . . . λn

...
...

. . .
...

λn−1
1 λn−1

2 . . . λn−1
n

 . (25)

is a transformation matrix that transforms Ac(1) into
DAc(1) = diag{λ1, . . . , λn} through the transformation
T−1Ac(1)T.

Additionally, we define DV(vk) ∈ Rn×n as:

DV(vk) = diag{1, v−1
k , . . . , v

−(n−1)
k }, (26)

Then, recalling that the eigenvalues divide by vk when
they move on the pole paths, DV(vk)T serves as a trans-
formation matrix that converts Ac(vk) into the modal form,
DAc(vk) = diag{λ1v

−1
k , . . . , λnv

−1
k } = v−1

k DAc(1).
With that in mind, we suggest defining Θ(k) as:

Θk = DV−1(vk−1)DV−1(vk)T
−1, (27)

which, according to the definition of Fk in Lemma 1, results
in:

Fk =DV−1(vk+1) . . .

DV−1(vk)T
−1Ac(vk)DV(vk)T︸ ︷︷ ︸

=DAc(vk)=v−1
k DAc(1)

. . .

DV(vk−1). (28)

Noticing that F is diagonal and therefore, F⊺
k = Fk, we have

F⊺
kFk =DV−2(vk+1)DV2(vk−1) . . .

v−2
k DAc2(1). (29)

Since we have assumed that the eigenvalues for v = 1
are inside the unit circle, then DAc2(1) < In. Therefore, to
prove F⊺

kFk − In < 0, we only need to ensure that:

DV−2(vk+1)DV2(vk−1)v
−2
k ≤ In (30)

On the other hand,

DV−2(vk+1)DV2(vk−1) = . . .

diag

{
1, . . . ,

(
vk+1

vk−1

)2(n−1)
}
. (31)

Therefore, the maximum value of the diagonal elements of
the left-hand side of (30) is:

max

{
v−2
k , v−2

k

(
vk+1

vk−1

)2(n−1)
}
. (32)

So, (30) is satisfied if v1 ≥ 1, and

∀k ≥ 2,

vk ≥ 1, and,

v−1
k

(
vk+1

vk−1

)(n−1)

≤ 1,
(33)

which proves the theorem.
Since our design recommendations include changes to

Ac(vk) after every κ ≥ 2n time steps, Corollary 1 guarantees
that if vk+1 is found to be admissible for {vk, vk−1}, its value
can be maintained until k + i for all i > 2.



Corollary 1: If vk = vk−1 = α1 and vk+1 = α2 meet the
conditions of Theorem 1, then ∀q > 2, maintaining vk+i =
α2 for i = {2, . . . , q} will not jeopardize the stability.

Proof: Since vk+1 = α2 must satisfy the conditions
of Theorem 1, α2 ≥ 1. Therefore, we can observe that
{vk+i, vk+i+1, vk+i+2} = {α2, α2, α2} is admissible ac-
cording to Theorem 1 for all i > 1.

Furthermore, {vk−1, vk, vk+1} = {α1, α1, α2} is assumed
to meet the conditions of Theorem 1. Thus, we only need to
verify the case where {vk, vk+1, vk+2} = {α1, α2, α2}.

In the event that α2 ≤ α1, we have(
vk+2

vk

)
=

(
α2

α1

)
≤ 1,

and therefore,

v−1
k+1

(
vk+2

vk

)(n−1)

= α−1
2

(
α2

α1

)(n−1)

≤ 1.

Since we have assumed that {vk−1, vk, vk+1} =
{α1, α1, α2} meet the conditions of Theorem 1, we have

α−1
1

(
α2

α1

)(n−1)

≤ 1.

Therefore in the event that α2 > α1,

α−1
2

(
α2

α1

)(n−1)

≤ α−1
1

(
α2

α1

)(n−1)

≤ 1,

which yields to

v−1
k+1

(
vk+2

vk

)(n−1)

= α−1
2

(
α2

α1

)(n−1)

≤ 1.

This concludes the proof.
Remark 1: From Theorem 1, we observe that the feasible

interval for moving vk becomes narrower as vk tends to 1.
Since the concept of the moving controller relies on time-
varying dynamics, it is advisable to establish a lower bound
for vk to ensure sufficient room for meaningful modifications
of the closed-loop eigenvalues. ■

V. CONCLUSION

The hybrid moving controller approach presented in this
paper addresses concerns related to the stability of the
moving target approaches. Additionally, it eliminates the
need for synchronization between the plant and control unit,
facilitating smoother practical implementation. Future work
can extend the concept of the hybrid moving controller
to continuous-time systems and explore more compromised
systems where even the input signal may not be secure.
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