
Software Component Services for Embedded Real-Time
Systems

Frank Lüders and Daniel Flemström
Dept. of Computer Science and Electronics

Mälardalen University
Box 883, SE-721 23 Västerås, Sweden

{frank.luders|daniel.flemstrom}@mdh.se

Anders Wall
ABB Corporate Research

Forskargränd 8
SE-721 78 Västerås, Sweden
anders.wall@se.abb.com

ABSTRACT
The use of software component models has become popu-
lar during the last decade, in particular in the development
of software for desktop applications and distributed infor-
mation systems. Such models have not been as popular in
the domain of embedded real-time systems, presumably be-
cause of the special requirements such systems have to meet.
There is a considerable amount of research on component
models for embedded real-time systems, or even narrower
application domains, which focuses on source code compo-
nents and statically configured systems. This paper explores
an alternative approach by laying the groundwork for a com-
ponent model based on binary components and targeting the
broader domain of embedded real-time systems. The work
is inspired by component models for the desktop and infor-
mation systems domain in the sense that a basic component
model is extended with a set of services for the targeted
application domain.

1. INTRODUCTION
The use of software component models has become increas-
ingly popular during the last decade. The most widespread
use of such models has occurred in the development of soft-
ware for desktop applications and distributed information
systems. The most popular component models include Jav-
aBeans [6] and ActiveX [5] for desktop applications and En-
terprise JavaBeans [15] and COM+ [18] for distributed infor-
mation systems. In addition to basic standards for naming,
interfacing, binding, etc., these models also define standard-
ized sets of run-time services oriented towards the applica-
tion domains they target.

Unlike for desktop applications and distributed information
systems, there has been no widespread use of software com-
ponent models in the domain of real-time and embedded
systems. It is generally assumed that this is due to the
special requirements such systems have to meet, in partic-
ular with respect to timing predictability and limited use

of resources such as memory and CPU time. Much research
has therefore been directed towards defining new component
models for real-time and embedded systems, typically fo-
cusing on relatively small and statically configured systems.
Most of the published research proposes models based on
source code components. Typically, these models target rel-
atively narrow application domains. Examples of published
models include the Koala component model for consumer
electronics [24], PECOS for industrial field devices [8], and
SaveCCM for vehicle control systems [9].

The focus on statically configured systems of source code
components is motivated by efficiency as well as by the pos-
sibility of ensuring predictable behavior through source code
analysis and white-box testing. A potential liability of us-
ing source code components is that application developers
rely on component properties that may be inferred from the
source code but are not guaranteed by component specifica-
tions. Thus, a system may break if a component is updated
with a new version that does not have the same inferred
properties, although the component specifications are com-
patible. The restriction to static configuration is increas-
ingly at odds with requirements for flexibility, adaptiveness,
etc. The development of component models for relatively
narrow application domains is motivated by the desire to op-
timize systems for attributes considered particularly impor-
tant for those domains. Typically, such narrow models, as
well as supporting tools and run-time infrastructures, have
to be developed by the application developing organizations
themselves.

An alternative approach is to strive for a component model
for embedded real-time systems based on binary components
and targeting a broader domain of applications, similarly to
the domain targeted by a typical real-time operating system.
Such a model could suitably be provided by platform ven-
dors, as is the norm for component models used for desktop
applications and information systems. Although any model
based on binary components is likely to incur some over-
head, efficient use of resources should be a primary concern
in the design of such a model for embedded real-time sys-
tems. When it comes to ensuring predictable behavior, our
vision is that analysis of systems should be based on spec-
ifications (i.e. models) of the included components rather
than relying on access to source code. Realizing this vision
requires methods for ensuring that components comply with
specifications as well as for predicting the properties of a sys-
tem based on properties of its constituent components [11].



Further discussion of such methods is outside the scope of
this paper, however.

One possibility is to use a mainstream component model,
such as Microsoft’s Component Object Model (COM) [4], as
the starting point for developing a component model for em-
bedded real-time system. Previous work has demonstrated
that the key concepts of COM can be used with advantage
in the development of an embedded real-time system [13]. A
study of COM and its extension Distributed COM (DCOM)
[20] shows that these models are not inherently incompatible
with real-time requirements [12]. Some reasons that COM
is an attractive starting point are that the model is rela-
tively simple and that commercial COM implementations
are already available for a few real-time operating systems.
Another advantage of COM is that it is already well-known
and accepted in industry. It has been reported by Jean
Favre et al. that industry is often reluctant to use the com-
plex and domain specific solutions that academia provides
[7]. One might worry that a model based on COM would be
viewed as old-fashioned from the start, since COM is being
increasingly replaced by Microsoft’s newer .NET model [19]
on the company’s desktop and server platforms. However,
Lutz and Laplante have found that .NET does not provide
the timing predictability required for real-time systems [14].

The purpose of this paper is to lay the groundwork for a
software component model for embedded real-time systems,
using the basic concepts of COM as the starting point. Our
vision is to make component-based software development an
attractive option for embedded real-time systems by extend-
ing the basic model with standardized services of general use
for this application domain, much like COM+ extends COM
with services for distributed information systems. Section 2
describes the general characteristics of embedded real-time
systems and outlines the requirements for a software compo-
nent model targeting this class of systems. In Section 3 we
clarify what we mean by component services and identify
some useful services for embedded real-time systems. Re-
lated work is reviewed in section 4 with particular focus on
how the problems addressed by the component services pro-
posed in Section 3 is solved by existing technologies. Sec-
tion 5 is an outline of a prototype tool we are developing
to support the component services presented in this paper.
Conclusions and some ideas for further work are presented
in Section 6.

2. SOFTWARE COMPONENTS AND
REAL-TIME SYSTEMS

2.1 Characteristics of Real-Time Systems
A real-time system is a system where the correctness not
only depends on correct functionality, but also on the timing
of delivered functionality. Consequently, the correct results
should be delivered not too early, nor too late. Real-time
systems are often embedded. Hence, resources such as com-
putational bandwidth and memory are scarce. Typically, we
find real-time systems in safety-critical applications, e.g. in
the automotive and aerospace domains. Therefore, it is de-
sired that their behavior, functional as well as temporal, is
deterministic and ultimately predictable. In order to be pre-
dictable the system configurations has to be fixed, or at least
fixed within an upper bound budget in terms of resource uti-

lization. This is, however, not necessarily true in the class
of real-time systems that we are targeting, where systems
can be dynamically re-configured and in presence of third-
party developed components whose temporal behavior, i.e.
execution times, are not explicitly specified.

Temporal requirements may take many different shapes. In
general, it is the physical environment that imposes the tim-
ing constraints on the system. For instance, the required
sampling frequency of a control system is determined by the
dynamics of the process to be controlled. A typical example
of a temporal requirement is deadlines. Deadlines specify
the longest acceptable response time that a particular func-
tion may exhibit. Existing methods for analyzing a real-time
system in order to determine whether or not the temporal
requirements are fulfilled require information about the soft-
ware architecture, e.g. scheduling policy, and the temporal
behavior of the different services, e.g. period times, schedul-
ing priorities, and execution times, in the system.

Moreover, in order to be predictable, the components must
exhibit a deterministic behavior. Typically, we are inter-
ested in the worst-case scenarios, e.g. worst-case execution
time (WCET), to be able to predict response times. Con-
sequently, the software architecture in a real-time system
must play along the rules governed by the method used for
predicting its behavior. This is especially true for the com-
ponents in the system. They must provide their services in
a time deterministic manner.

The thread of execution, often referred to as a task, defines
a path of execution in the application. These can execute in
parallel and are typically executed periodically or triggered
by events. Depending on the scheduling strategy, the prior-
ity on a task determines the execution order in the schedule.

2.2 Component Model Terminology
A component technology typically consists of a component
model and a component model implementation. In this pa-
per we use the following definitions of these concepts from
[10]:

A component model defines specific interaction
and composition standards. A component model
implementation is the dedicated set of executable
software elements required to support the execu-
tion of components that conform to the model.

Examples of quality attributes used in the real-time domain
are WCET and resource usage. A component framework
is a set of services needed for realizing a specific component
model. Examples of such are the COM-libraries, .NET Run-
time and different EJB implementations. Typical services of
the framework is to handle run-time creation of components
and component intercommunication.

There are several definitions of what a software component
is. In academia a common definition is the one by Szyperski
[23]:

A software component is a unit of composition
with contractually specified interfaces an explicit



context dependencies only. A software compo-
nent can be deployed independently and is sub-
ject to composition by third party.

COM specifies a component as ”A piece of compiled soft-
ware, which is offering a service”. This is a very general
definition, but in practice and specifically for this paper to-
gether with the definition above, this means that a compo-
nent corresponds to a file containing binary executable code,
often a DLL.

2.3 Real-Time Component Technologies
Real-Time component technologies are component technolo-
gies that enforce temporal and resource determinism. They
are often less flexible than their desktop counterparts in or-
der to save resources and increase predictability. The re-
quirements we put on a real-time component technology, in
our setting, include the following:

• Enforcing thread of execution.

• Deterministic execution times on services provided by
components.

• Time deterministic communication among components.

• Synchronization of access to common physical and log-
ical resources.

Having a deterministic execution time behavior requires that
the communication between components is time determin-
istic as well. Consequently, components must be able to
guarantee an temporal upper limit on the communication.
Finally, the access to components must be synchronized in
a way such that their states are kept consistent. For in-
stance, two concurrent services may not simultaneously up-
date state variables in a component.

3. COMPONENT SERVICES
In this paper we define Component Services as solutions to
common problems that can be applied to components with
no or little programming effort. Examples of such services
are logging, synchronization and transaction control. The
implementation of the services may reside in a component
framework, be generated from component specifications or
a combination of both. In the time determinism area, we
striving for reduced pessimism in the WCET budgets of
third party components. In a complex industrial setting
it may not be possible to exactly determine the WCET for
each method. One way of solving this problem is to use
time budgets [16]. These budgets specify the upper limit of
the estimated WCET. The rest of the system is assembled
accordingly.

For synchronization we concentrate on the case where sev-
eral threads of execution needs access to the same data,
typically the state of a component. Here we apply differ-
ent synchronization policies in order to protect shared data
from being written from several sources at the same time.
This means that singlethreaded component may be used in
a multithreaded environment without modification. COM
supports a rudimentary protection where only one thread

at a time can access a component. We strive for a more
flexible synchronization and with less overhead than in the
case of COM . Since we are dealing with real-time applica-
tions, it should be possible to specify how long it is accept-
able to wait before the call is dispatched. If many calls are
blocked, the total response time might exceed the deadline
even though the WCET of the component is less than the
deadline.

Traditionally, most of these mechanisms have to be hand
coded and off line deduced using complex theories, such as
petri nets [17] which can be very time and resource consum-
ing and in some time impossible due to the complexity of
a real industrial setting. If third party binary comports are
used, it may also be impossible to add for example, synchro-
nization or execution path logging.

4. RELATED WORK
The services discussed in this paper have already been adopted
by some current and emerging technologies. As a base for
our discussions, we have selected a few of the most common
solutions for the issues stressed in Section 2. In addition,
this section briefly reviews some existing research on binary
components for real-time systems.

Microsofts component model COM [4] is originally target-
ing the desktop software domain, which means that it has a
good support for specifying and maintaining functional as-
pects of components while disregarding temporal behavior
and resource utilization. Often this can only be overcome
with a substantial amount of component specific program-
ming. There is no built in support to automatically mea-
sure and record execution times for methods in components.
This is typically done by third party applications that in-
strument the code in run-time. These applications are typ-
ically not well suited for executing on embedded resource
constrained systems. The desktop version of COM, as well
as the DCOM package available for WindowsCE, has some
support for synchronizing calls to components that are not
inherently thread safe. This is achieved through the use
of so-called apartments, which can be used to ensure that
only one thread can execute code in the apartment at a
time. Since this technique origins from the desktop version
of COM, there is no built in support for time determinism
and the resource overhead is larger than desired for many
embedded systems.

COM+ [18] is Microsoft’s extension of their own COM model
with services for distributed information systems. These ser-
vices provide functionality such as transaction handling and
persistent data management, which is common for applica-
tions in this domain and which is often time consuming and
error prone to implement for each component. Application
builders declare which services are required for each compo-
nent and the COM+ run-time system provides the services
by intercepting calls between components. COM+ is a ma-
jor source of inspiration for our work in two different ways.
Firstly, we use the same criteria for selecting which services
our component model should standardize, namely that they
should provide non-trivial functionality that is commonly
required in the targeted application domain. Since our com-
ponent model targets a different domain from COM+, the
services we have selected are different from those of COM+



Compile

ReadReadGene
rate

IC2

C2_ProxyIProxy

IUnknown

C2_Proxy

C2.IDL

C2_Proxy
.CPP

.H

Applica
tion .
XML

G
en

er
at

e

Wizard /Code 
Generator

IUnknown

C2

IC2

Figure 1: Generating a Component Service.

as well. Secondly, we are inspired by the technique of pro-
viding services by interception. Section 5 demonstrates how
this can be achieved using automatically generated proxy
objects.

Wolfgang et al. [21] describes a method, using C# [1] at-
tributes to generate a proxy that handles component repli-
cation for fault tolerance. Our work is primarily targeting
COM and C++, which does not support attributes as used
in that paper. However, there is a possibility to use custom
IDL attributes instead. As opposed to C# attributes, these
attributes can only be read in compile time, which means
that we need a compilation step just before deploying the
component.

Zerzelidis and Wellings [25] describe their requirements for
adding real time capabilities to the .NET framework. They
have approached the problem from the Java Real-Time Spec-
ification [3]. This report aims to adjust the CLR (Common
Language Run-time) for real-time support.

Sundmark et al. [22] describes monitoring of components
in order to gain more realistic WCET estimations. In their
model the WCET is guessed at development time and the
component is then continuously monitored at runtime and
measurements of execution times are accumulated. This is
specifically useful when moving components between differ-
ent hardware and software platforms where executions times
will obviously vary. This technique is very similar to our ap-
proach.

5. PROTOTYPE OUTLINE
In this section we outline our intentions for a prototype that
adds support for well known state-of-the-art solutions of
common real-time problems to the widely accepted COM
technology. We suggest that COM is extended with wizard
generated light weight component services together with a
resource efficient service framework. Attributes that only
applies to a specific component, and does not depend on
the application is specified in the IDL file of that compo-
nent. Information that is application dependent is stored
in the application configuration file. These files are used by
the wizard when realizing the component services. Figure 1
shows this process in a schematic way.

Staying as close as possible to the original COM and COM+
concepts is considered to be an important design goal. An-
other design goal is that the programmer or integrator should
be able to choose what ever services is needed for each spe-
cific component without having to change the implementa-
tion or doing any programming. There are however cases,
for example when we add timeouts on actions or converting
synchronous interfaces into asynchronous ones, where there
is a need for adapting the code of the client component to
fully benefit from the service.

Specific to COM is that a component is realized by a set of
co-classes that in turn implements a number of interfaces.
All interfaces have a method QueryInterface that allows us
to change from one interface to another on the same co-class,
given that we know the interface ID. In this prototype we
apply services on interfaces of a component. In practice this
means we have know the co-class of the component and gen-
erate a proxy code for all interfaces of that co-class. This is
required by the definition of QueryInterface. A proxy is a
COM co-class that acts another co-class. Incoming calls are
processed and then delegated to the real implementation.
Proxies are heavily used in COM, DCOM and COM+ e.g
for representing components on another node or for adding
transactional support. This concept makes component ser-
vices more or less transparent to the component client and
server. This is an attractive alternative as it gives the oppor-
tunity to add and remove functionality at deployment-time.
Although a proxy adds some probe effects, that effect should
be deterministic and constant.

We suggest that a deployment host (typically a desktop PC
with a development environment) is used where wizards and
compilators can generate and build the necessary proxies
and interconnections. This allows a high level of flexibil-
ity when assembling and deploying a system, while runtime
flexibility is kept on a reasonable level. Information not di-
rectly required in run-time is removed from the components
when they are deployed on the target system.

5.1 Logging
The logging component service allows us to exactly deter-
mine the execution path and the timing of an application
without recompiling or in any other way programmatically
changing the components involved. The chosen solution is
combine proxies with a simple time stamped logger func-
tion. To add logging for an interface, we simply add an
entry in the application configuration file. Figure 2 shows
an example of such a file, written in XML. In the figure, C2
implements the requested interface IC2. For this interface
we wish to apply a logging service. A proxy that handles
the interfaces of the co-class C2 is generated and deployed
together with the original components.

At run-time, when a client tries to create a C2 co-class, it
gets a proxy that writes a time-stamped log message to a
log-file,before and after each call delegation. Figure 3 is a
schematic of the involved objects.

5.2 Execution Time Measurement
This service monitors a component with respect of execution
time. Different cases like for example worst, best and aver-
age case can be monitored. The information can be used by



<application>

...

<component name="myProject.C2">

<interface name="IC2">

<service type ="Logging"/>

</interface>

</component>

...

</application>

Figure 2: Specification of a Logging Service.

IUnknown

C1

IC1 IC2

C2_ProxyIProxy

IUnknown

C2

IC2

Log/Timing

IUnknown

C2_Proxy

Figure 3: A Logging Service Proxy.

an on-line scheduler to adapt its scheduling strategy. The
chosen solution here is a proxy with a simple time collection
function. A timer is started before delegating the call, and
stopped immanently after the call has returned.

Adding time measurement for an interface is done similar
to the previous example. We simply add an entry for the
affected co-class in the application configuration file as illus-
trated in Figure 4. No programming is required in the client
nor in the server component.

5.3 Time Deterministic Synchronization
Using a synchronization policy together with a priority pol-
icy, this service synchronizes calls from several threads to a
non-thread safe component in a time deterministic manner.

<application>

...

<component name="myProject.C2"

<interface name="IC2">

<service type="Timing">

<measurement type="mean" />

<measurement type="worst"/>

</service>

</interface>

</component>

...

</application>

Figure 4: Specification of a Timing Service.

Several different policies may be useful and will be described
further in this section.

Our solution here is to use proxies that encapsulate syn-
chronization mechanisms. Such a proxy can be applied to
an interface, a co-class, or a complete component, depend-
ing on how the component is built up internally. For exam-
ple; interfaces of a co-class that does not write to the same
data may be served by different proxies to avoid unnecessary
blocking.

Time monitoring is used for calculating if the calls will meet
their deadlines. The worst case response time for a func-
tion call is calculated as the WCET sum of all calls waiting
in the proxy and compared to the deadline. If the deadline
can be met, the call is put into the queue of the synchroniza-
tion mechanism. If, on the other hand, the deadline cannot
be met, an error code is immediately returned. A synchro-
nization policy can be specified for an interface, co-class, or
component, in the application configuration file.

A mutual exclusion policy blocks all threads in the queue ex-
cept one. The calls are then dispatched one by one according
to the priority policy. When a call has completed, the calling
thread unblocks and returns to the client. Thus guarantee-
ing that exactly one thread executes code within the com-
ponent and that functions are always allowed to complete
before switching thread. Using the synchronization service
with this policy requires no programming in the server com-
ponent, but the client side should be able to handle error
codes that indicate that deadlines cannot be met.

Another class of synchronization policies is different reader/
writer policies. These differs from the previously described
policy in that any number of read operations may execute
in parallel, while write operations have exclusive execution.
Thus, the operations subjected to a reader/writer policy
must be classified as either writer or reader operations, de-
pending on whether they may modify state or not. Concur-
rent ”read”-threads are scheduled by the OS with respect
of their priorities. The locking time for those threads is re-
duced as well. Using this policy means that the IDL file for
the component must be augmented with custom properties
for each method, telling whether it is a read or write type of
operation. If a method does not have such an attribute, the
proxy must assume it may write data. No programming is
required in the server component, but the client side should
be able to handle error codes as with the mutual exclusion
policy.

For all synchronization policies, we may select if the priority
of the dispatching thread should be the same as the calling
thread, or as specified in the application XML file.

5.4 Vertical Services
In addition to the type of services discussed above, which
we believe are generally useful for embedded real-time sys-
tems, one can imagine many services aimed at more spe-
cific application domains, often called vertical services [10].
Among the services we have considered are cyclic execu-
tion, which are much used in process control loops [2], and
support for redundancy mechanisms such as N-version com-
ponents, which are useful in fault-tolerant systems [21].



6. SUMMARY AND CONCLUSION
The aim of this work has been to lay the groundwork for
component services for embedded real-time systems using
COM as a base technology. A major benefit of this approach
is that industrial programmers can leverage their knowledge
of existing technologies. Also, extending COM with real-
time services probably requires less effort than inventing a
new component technology from the ground. The initial
experiences with the prototype shows that it is possible to
create tools and wizards that more or less invisibly add real-
time services to a standard component model.

We realize that the proposed solutions imposes some time
and memory overhead, and we believe that this is an accept-
able price for many embedded real-time systems if using the
model reduces the software development effort. It is, how-
ever, necessary that this overhead can be kept within known
limits. In our future work, we plan to evaluate a prototype
implementations of the proposed component model exper-
imentally. Measurements will be made to determine the
component model’s effect on timing predictability as well as
time and memory overhead.

We have been able to identify some component services
which we believe are useful for embedded real-time systems.
As part of our future work, we plan to evaluate the useful-
ness of the services as well as to extend the set of services.
We hope to do this with the help of input from organizations
developing products in such domains as industrial automa-
tion, telecommunication, and vehicle control systems.

7. REFERENCES
[1] T. Archer. Inside C#. Microsoft Press, 2001.

[2] K. J. Åström and B. Wittenmark. Computer
Controlled Systems — Theory and Design. Prentice
Hall, 2nd edition, 1990.

[3] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
D. Hardin, and M. Turnbull. The Real-Time
Specification for Java. Addison Wesley Longman,
2000.

[4] D. Box. Essential COM. Addison-Wesley, 1997.

[5] D. Chappell. Understanding ActiveX and OLE.
Microsoft Press, 1996.

[6] R. Englander. Developing Java Beans. O’Reilly, 1997.

[7] J. Estublier, J.-M. Favre, and R. Sanlaville. Tool
adoption issues in a very large software company. In
Proceedings of the 3rd International Workshop on
Adoption Centric Software Engineering, 2003.

[8] T. Genler, C. Stich, A. Christoph, M. Winter,
O. Nierstrasz, S. Ducasse, R. Wuyts, G. Arvalo,
B. Schönhage, and P. Müller. Components for
embedded software — the PECOS approach. In
Proceedings of the 2002 International Conference on
Compilers, Architectures and Synthesis for Embedded
Systems, 2002.

[9] H. Hansson, M. Åkerholm, I. Crnkovic, and
M. Törngren. SaveCCM — a component model for
safety-critical real-time systems. In Proceedings of the
30th EROMICRO Conference, 2004.

[10] G. T. Heineman and W. T. Council.
Component-Based Software Engineering — Putting
the Pieces Together. Addison-Wesley, 2001.

[11] S. A. Hissam, G. A. Moreno, J. Stafford, and K. C.
Wallnau. Enabling predictable assembly. The Journal
of Systems and Software, 65(3):185–198, 2003.

[12] F. Lüders. Adopting a software component model in
real-time systems development. In Proceedings of the
28th Annual IEEE/NASA Software Engineering
Workshop, 2004.

[13] F. Lüders, I. Crnkovic, and P. Runeson. Adopting a
component-based software architecture for an
industrial control system — a case study. In
C. Atkinson, C. Bunse, H.-G. Gross, and C. Peper,
editors, Component-Based Software Engineering for
Embedded Systems. Springer Verlag, 2005.

[14] M. H. Lutz and P. A. Laplante. C# and the .NET
framework: Ready for real-time? IEEE Software,
20(1):74–80, 2003.

[15] R. Monson-Haefel, B. Burke, and S. Labourey.
Enterprise JavaBeans. O’Reilly, 4th edition, 2004.

[16] C. Norström, K. Sandström, J. Mäki-Turja, and N.-E.
B̊ankestad. Findings from introducing state-of-the-art
real-time techniques in vehicle industry. In Proceedings
of the 12th Euromicro Conference on Real-Time
Systems, 2000.

[17] J. L. Peterson. Petri Net Theory and the Modeling of
Systems. Prentice Hall, 1981.

[18] D. S. Platt. Understanding COM+. Microsoft Press,
1999.

[19] D. S. Platt. Introducing Microsoft .NET. Microsoft
Press, 3rd edition, 2003.

[20] F. E. Redmond III. DCOM — Microsoft Distributed
Component Object Model. Hungry Minds, 1997.

[21] W. Shult and A. Polze. Aspect-oriented programming
with C# and .NET. In Proceedings of the Fifth IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing, 2002.

[22] D. Sundmark, A. Möller, and M. Nolin. Monitored
software components - a novel software engineering
approach. In Proceedings of the 11th Asia-Pacific
Software Engineering Conference, Workshop on
Software Architectures and Component Technologies,
2004.

[23] C. Szyperski. Component-Software — Beyond Object
Oriented Programming. Addison-Wesley, 2nd edition,
2002.

[24] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The koala component model for consumer
electronics software. Computer, 33(3):78–85, 2000.

[25] A. Zerzelidis and A. J. Wellings. Requirements for a
real-time .NET framework. ACM SIGPLAN Notices,
40(2):41–50, 2005.


