
Formal Semantics for PLEX

Johan Erikson & Björn Lisper
Department of Computer Science and Electronics

Mälardalen University
{johan.erikson, bjorn.lisper}@mdh.se

In any system with shared data and concurrent (or independent) activities, there is a need
to guarantee exclusive access to the shared data. A system designed for parallel processing
handles this by synchronizing the access to the shared data. But if parallel processing, and
synchronization, wasn’t an issue at the time of designing the system, non-preemptive exe-
cution on a single-processor architecture, automatically guarantees exclusive access to the
shared data. We denote the software in the second case as ’sequential software’.

While legacy software systems, developed and maintained over many years, contains large
amounts of sequential software (executed on single-processor architectures), there is a devel-
opment towards different forms of parallel hardware. The problem arises when the single-
processor architecture is to be replaced by a multi-processor ditto. At this point, the non-
preemptive execution does not protect the shared data any longer, since independent parts,
still executed in a non-preemptive fashion, but on different processors, may now access and
update the same data concurrently. The question is: How is such a system to be parallelized?

A naive solution would be to re-implement the system, but since a legacy software system
may contain several million lines of code, this solution is infeasible. A more reasonable so-
lution would be criteria that ensures when functional equivalence, in some central aspect, is
preserved for the existing software when it, without any changes, is executed on a parallel
architecture. To ensure the correctness of such criteria, the formal semantics of the language
in question need to be considered.

Our subject of study is the language PLEX, which is used to program the functionality
in the AXE telephone exchange system from Ericsson. All the above properties: indepen-
dent activities, shared data, non-preemptive execution, and a single-processor architecture
are present in the system.

Besides an asynchronous communication paradigm, PLEX is an imperative language with
assignments, conditionals, goto’s, and a restricted iteration construct (which only iterates be-
tween given start and stop values). It lacks some common statements from other program-
ming languages such as WHILE loops, negative numeric values and real numbers. A PLEX
program file (called a block) consists of several, independent sub-programs, which can be exe-
cuted in any order, together with block wise scooped data.

Since the semantics for PLEX previously has been defined through its implementation, the
formal semantics of the language has to be defined before any criteria could be stated. In a
recent paper [EL05], we have presented two versions of a small steps operational semantics
(in the styled used in [NN92]) for the language, and in which the execution of statements is
modeled as state transitions. The first version models the existing source code executed by the
current single-processor architecture, whereas the second models the execution on an experi-
mental, multi-threaded, shared-memory architecture. The parallel architecture, and its exe-

1



cution model, is designed to be functionally equivalent with the single-processor architecture
in the sense that is should be possible to execute the old software in the parallel environment
without any changes in the existing source code. The price to pay in order to achieve this
(no changes to the existing code), is a restricted execution model which only allows parallel
execution for unrelated activities. Related activities, on the other hand, are forced to execute
in the same sequential order as in the single-processor case. Exclusive access to the shared
data is ensured by the run-time system, which utilizes a number of binary locks to prevent
simultaneous access to the same block.

Since the current parallel implementation is rather restricted, in that it only allows one
thread at the time to execute code in a block, the continuation of our work will add primitives
for synchronization to PLEX, thereby defining the language ”Parallel-PLEX”. We will also
specify the semantics for this extended language, and from there continue with the criteria
that ensures safe parallel execution in a less restricted execution model. Future work will
also include a formal definition of the term ’functional equivalence’, as well as proving that
the property holds between the different semantics.

References

[EL05] J. Erikson and B. Lisper. Two Formal Semantics for PLEX. In Proceedings of the
3nd APPSEM II Workshop, APPSEM’05, Frauenchiemsee, Germany, 13-15 Septem-
ber 2005.

[NN92] H. R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction.
John Wiley & Sons, 1992.

2


