
 
Merging In-House Developed Software Systems  

– A Method for Exploring Alternatives 
 

Rikard Land, Jan Carlson, Ivica Crnković, Stig Larsson 
Mälardalen University, Department of Computer Science and Electronics  

PO Box 883, SE-721 23 Västerås, Sweden 
+46 21 10 70 35 

{rikard.land, jan.carlson, ivica.crnkovic, stig.larsson}@mdh.se, http://www.idt.mdh.se/{~rld, ~jcn, ~icc} 
 
  

Abstract 
An increasing form of software evolution is software 
merge – when two or more software systems are being 
merged. The reason may be to achieve new integrated 
functions, but also remove duplication of services, 
code, data, etc. This situation might occur as systems 
are evolved in-house, or after a company acquisition 
or merger. One potential solution is to merge the 
systems by taking components from the two (or more) 
existing systems and assemble them into an existing 
system. The paper presents a method for exploring 
merge alternatives at the architectural level, and 
evaluates the implications in terms of system features 
and quality, and the effort needed for the 
implementation. The method builds on previous 
observations from several case studies. The method 
includes well-defined core model with a layer of 
heuristics in terms of a loosely defined process on top. 
As an illustration of the method usage a case study is 
discussed using the method.  

1. Introduction 
When organizations merge, or collaborate very 
closely, they often bring a legacy of in-house 
developed software systems. Often these systems 
address similar problems within the same business and 
there is usually some overlap in functionality and 
purpose. A new system, combining the functionality of 
the existing systems, would improve the situation from 
an economical and maintenance point of view, as well 
as from the point of view of users, marketing and 
customers. During a previous study involving nine 
cases of such in-house integration [10], we saw some 
drastic strategies, involving retiring (some of) the 
existing systems and reusing some parts, or only 
reutilizing knowledge and building a new system from 
scratch. We also saw another strategy of resolving this 
situation, which is the focus of the present paper: to 
merge the systems, by reassembling various parts from 

several existing system into a new system. From many 
points of view, this is a desirable solution, but based 
on previous research this is typically very difficult and 
is not so common in practice; there seem to be some 
prerequisites for this to be possible and feasible [10].   

There is a need to relatively fast and accurately 
find and evaluate merge solutions, and our starting 
point to address this need has been the following 
previous observations [10]: 
1. Similar high-level structures seem to be a 

prerequisite for merge. Thus, if the structures of the 
existing systems are not similar, a merge seems in 
practice unfeasible.  

2. A development-time view of the system is a simple 
and powerful system representation, which lends 
itself to reasoning about project characteristics, such 
as division of work and effort estimations.  

3. A suggested beneficial practice is to assemble the 
architects of the existing systems in a meeting early 
in the process, where various solutions are outlined 
and discussed. During this type of meeting, many 
alternatives are partly developed and evaluated until 
(hopefully) one or a few high-level alternatives are 
fully elaborated. 

4. The merge will probably take a long time. To 
sustain commitment within the organization, and 
avoid too much of parallel development, there is a 
need to perform an evolutionary merge with 
stepwise deliveries. To enable this, the existing 
systems should be delivered separately, sharing 
more and more parts until the systems are identical.  

This paper presents a systematic method for exploring 
merge alternatives, which takes these observations into 
account: by 1) assuming similar high-level structures, 
2) utilizing static views of the systems, 3) being simple 
enough to be able to learn and use during the 
architects’ meetings, and 4) by focusing not only on an 
ideal future system but also stepwise deliveries of the 
existing systems. The information gathered from nine 



case studies was generalized into the method presented 
in this paper. To refine the method, we made further 
interviews with participants in one of the previous 
cases, which implemented the merge strategy most 
clearly. 

The rest of the paper is organized as follows. We 
define the method in Section 2 and discuss it by means 
of an example in Section 3. Section 4 discusses 
important observations from the case and argues for 
some general advices based on this. Section 5 surveys 
related work. Section 6 summarizes and concludes the 
paper and outlines future work.  

2. Software Merge Exploration 
Method 
Our software merge exploration method consists of 
two parts: (i) a model, i.e., a set of formal concepts and 
definitions, and (ii) a process, i.e., a set of human 
activities that utilizes the model. The model is 
designed to be simple but should reflect reality as 
much as possible, and the process describes higher-
level reasoning and heuristics that are suggested as 
useful practices.  

To help explaining the method, we start with a 
simple example in Section 2.1, followed by a 
description of the method’s underlying model (Section 
2.2) and the suggested process (Section 2.3). 

2.1 An Explanatory Example 
Figure 1a shows two simple music sequencer software 
systems structured according to the “Model-View-
Controller” pattern [2]. The recorded music would be 
the model, which can be viewed as a note score or as a 
list of detailed events, and controlled by mouse clicks 
or by playing a keyboard.  

The method uses the module view [3,5] (or 
development view [8]), which describes modules and 
“use” dependencies between them. Parnas defined the 
“use” dependency so that module α is said to use 
module β if module α relies on the correct behavior of 
β to accomplish its task [14].  

In our method, the term module refers to an 
encapsulation of a particular functionality, purpose or 
responsibility on an abstract level. A concrete 
implementation of this functionality is called a module 
instance. In the example, both systems have a 
EventView module, meaning that both systems 
provide this particular type of functionality (e.g., a 
note score view of the music). The details are probably 
different in the two systems, though, since the 
functionality is provided by different concrete 
implementations (the module instances EventViewA 

and EventViewB, respectively). The method is not 
restricted to module instances that are present in the 
existing systems but also those that are possible in a 
future system; such new module instances could be 
either a planned implementation (e.g., 
EventViewnew_impl), an already existing module to be 
reused in-house from some other program (e.g., 
EventViewpgm_name), or an open source or commercial 
component (EventViewcomponent_name).  

2.2 The Model 
Our proposed method builds on a model consisting of 
three parts: a set of model elements, a definition of 
inconsistency in terms of the systems’ structures, and a 
set of permissible user operations.  

2.2.1 Concepts and Notation 
The following concepts are used in the model: 
• We assume there are two or more existing 

systems, (named with capital letters, and 
parameterized by X, Y, etc.). 

• A module represents a conceptual system part 
with a specific purpose (e.g., EventView in 
Figure 1). Modules are designated with capital 
first letter; in the general case we use Greek letters 
α and β.   

• A module instance represents a realization of a 
module. It is denoted αX where α is a module and 
X is either an existing system (as in EventViewA) 
or an indication that the module is new to the 
systems (as in EventViewpgm_name or 
EventViewcomponent_name).  

• A “use” dependency (or dependency for short) 
from module instance αX to module instance βY 
means that αX relies on the correct behavior of βY 
to accomplish its task. We use the textual notation 
αX  βY to represent this. 

• A dependency graph captures the structure of a 
system. It is a directed graph where each node in 
the graph represents a module instance and the 
edges (arrows) represent use dependencies. In 
Figure 1a, we have for example the dependencies 
NoteViewA  MusicModelA and MouseCtrlB  
MusicModelB.  

• An adaptation describes that a modification is 
made to αX in order for it to be compatible, or 
consistent with βY, and is denoted 〈αX, βY〉 (see 
2.2.2 below).  

• A scenario consists of a dependency graph for 
each existing system and a single set of 
adaptations. 



Event
ViewA

Mouse
CtrlA

Note
ViewA

System A System B

Adaptation Set: <KbdCtrlnew, MusicModelA> <MusicModelB, MouseCtrlA>

Music
ModelA

Kbd
CtrlA

Event
ViewB

Mouse
CtrlB

Note
ViewB

Music
ModelB

Kbd
CtrlB

Event
ViewA

Mouse
CtrlA

Note
ViewB

System A System B

Music
ModelA

Kbd
Ctrlnew

Event
ViewA

Mouse
CtrlA

Note
ViewB

Music
ModelB

Kbd
CtrlB

a) Initial state

b) State after some changes have been made to the systems

 
Figure 1. Two example systems with the same structure being merged. 

2.2.2 Inconsistency 
A dependency from αX to βY can be inconsistent, 
meaning that βY cannot be used by αX. Trivially, the 
dependency between two module instances from the 
same system is consistent without further adaptation. 
For the dependency between two modules from 
different systems we cannot say whether they are 
consistent or not. Most probably they are inconsistent, 
which has to be resolved by some kind of adaptation if 
we want to use them together in a new system. The 
actual adaptations made could in practice be of many 
kinds: some wrapping or bridging code, or 
modifications of individual lines of code; see further 
discussion in 4.1. 

Formally, a dependency αX  βY is consistent if  
X = Y or if the adaptation set contains 〈αX, βY〉 or 〈βY, 
αX〉. Otherwise, the dependency is inconsistent. A 
dependency graph is consistent if all dependencies are 
consistent; otherwise it is inconsistent. A scenario is 
consistent if all dependency graphs are consistent; 
otherwise it is inconsistent.  

Example: The scenario in Figure 1b is 
inconsistent, because of the inconsistent dependencies 
from NoteViewB to MusicModelA (in System A) and 
from EventViewA to MusicModelB (in System B). 
The dependencies from KbdCtrlnew to MusicModelA 
(in System A) and from MouseCtrlA to MusicModelB 
(in System B) on the other hand are consistent, since 
there are adaptations 〈KbdCtrlnew, MusicModelA〉 and 
〈MusicModelB, MouseCtrlA〉 representing that 
KbdCtrlnew and MusicModelB have been modified to 

be consistent with MusicModelA and MouseCtrlA 
respectively.  

2.2.3 Scenario Operations 
The following operations can be performed on a 
scenario: 
1. Add an adaptation to the adaptation set. 
2. Remove an adaptation from the adaptation set. 
3. Add the module instance αX to one of the 

dependency graphs, if there exists an αY in the 
graph. Additionally, for each module β, such that 
there is a dependency αY  βZ in the graph, a 
dependency αX  βW must be added for some βW 
in the graph. 

4. Add the dependency αX  βW if there exist a 
dependency αX  βZ (with Z≠W) in the graph.  

5. Remove the dependency αX  βW if there exists a 
dependency αX  βZ (with Z≠W) in the graph.  

6. Remove the module instance αX from one of the 
dependency graphs, if there are no edges to αX in 
the graph, and if the graph contains another 
module instance αY (i.e., with X≠Y). 

Note that these operations never change the 
participating modules of the graphs (if there is an αX in 
the initial systems, they will always contain some αY). 
Similarly, dependencies between modules are also 
preserved Note also that we allow two or more 
instances for the same module in a system; when this 
could be suitable for a real system is discussed in 4.2. 



2.3 The Process 
The suggested process consists of two phases, the first 
consisting of two simple preparatory activities (P-I and 
P-II), and the second being recursive and exploratory 
(E-I – E-IV). 

The scope of the method is within an early 
meeting of architects, where they (among other tasks) 
outline various merge solutions. To be able to evaluate 
various alternatives, some evaluation criteria should be 
provided by management, product owners, or similar 
stakeholders. Such criteria can include quality 
attributes for the system, but also considerations 
regarding development parameters such as cost and 
time limits. Other boundary conditions are the strategy 
for the future architecture and anticipated changes in 
the development organization. Depending on the 
circumstances, evaluation criteria and boundary 
conditions could be renegotiated to some extent, once 
concrete alternatives are developed. 

2.3.1 Preparatory Phase 
The Preparatory phase consists of two activities:  

Activity P-I: Describe Existing Systems. First, 
the dependency graphs of the existing systems must be 
prepared, and common modules must be identified. 
These graphs could be found in existing models or 
documentation, or extracted by reverse engineering 
methods, or simply created by the architects 
themselves.  

Activity P-II: Describe Desired Future 
Architecture. The dependency graph of the future 
system has the same structure, in terms of modules, as 
the existing systems. For some modules it may be 
imperative to use some specific module instance (e.g., 
αX because it has richer functionality than αY, or a new 
implementation αnew because there have been quality 
problems with the existing αX and αY). For other 
modules, αX might be preferred over αY, but the final 
choice will also depend on other implications of the 
choice, which is not known until different alternatives 
are explored. The result of this activity is an outline of 
a desired future system, with some annotations, that 
serve as a guide during the exploratory phase. This 
should include some quality goals for the system as a 
whole. 

2.3.2 Exploratory Phase 
The result of the preparatory phase is a single scenario 
corresponding to the structure and module instances of 
the existing systems. The exploratory phase can then 
be described in terms of four activities: E-I “Introduce 
Desired Changes”, E-II “Resolve Inconsistencies”, E-
III “Branch Scenarios”, and E-IV “Evaluate 
Scenarios”. 

The order between them is not pre-determined; 
any activity could be performed after any of the others. 
They are however not completely arbitrary: early in the 
process, there will be an emphasis on activity E-I, 
where desired changes are introduced. These changes 
will lead to inconsistencies that need to be resolved in 
activity E-II. As the exploration continues, one will 
need to branch scenarios in order to explore different 
choices; this is done in activity E-III. One also wants 
to continually evaluate the scenarios and compare 
them, which is done in activity E-IV. Towards the end 
when there are a number of consistent scenarios there 
will be an emphasis on evaluating these deliveries of 
the existing systems. For all these activities, decisions 
should be described so they are motivated by, and 
traceable to, the specified evaluation criteria and 
boundary conditions. These activities describe high-
level operations that are often useful, but nothing 
prohibits the user from carrying out any of the 
primitive operations defined above at any time.  

Activity E-I: Introduce Desired Changes. Some 
module instances, desired in the future system, should 
be introduced into the existing systems. In some cases, 
it is imperative where to start (as described for activity 
P-II); the choice may e.g., depend on the local 
priorities for each system (e.g., “we need to improve 
the MusicModel of system A”), and/or some strategic 
considerations concerning how to make the envisioned 
merge succeed (e.g., “the MusicModel should be 
made a common module as soon as possible”).  

Activity E-II: Resolve Inconsistencies. As 
modules are exchanged in the graphs, dependencies  
αX  βY might become inconsistent. There are several 
ways of resolving these inconsistencies: 
• Either of the two module instances could be 

modified to be consistent with the interface of the 
other. In the model, this means adding an 
adaptation to the adaptation set. In the example of 
Figure 1b, the inconsistency between NoteViewB 
and MusicModelA in System A can be solved by 
adding either of the adaptations 〈NoteViewB, 
MusicModelA〉 or 〈MusicModelA, NoteViewB〉 to 
the adaptation set. (Different types of possible 
modifications in practice are discussed in Section 
4.1.) 

• Either of the two module instances could be 
exchanged for another. There are several 
variations on this: 
− A module instance is chosen so that the new 

pair of components is already consistent. This 
means that αX is exchanged either for αY 
(which is consistent with βY as they come from 
the same system Y) or for some other αZ for 
which there is an adaptation 〈αZ, βY〉 or 〈βY, 



αZ〉. Alternatively, βY is exchanged for βX or 
some other βZ for which there is an adaptation 
〈βZ, αX〉 or 〈αX , βZ〉. In the example of Figure 
1b, MusicModelA could be replaced by 
MusicModelB to resolve the inconsistent 
dependency NoteViewB  MusicModelA in 
System A.  

− A module instance is chosen that did not exist 
in either of the previous systems. This could 
be either of: 

i) a module reused in-house from some other 
program (which would come with an 
adaptation cost),  

ii) a planned or hypothesized new development 
(which would have an implementation cost, 
but low or no adaptation cost), or  

iii) an open source or commercial component 
(which involves acquirement costs as well as 
adaptation costs, which one would like to 
keep separate).  

• One more module instance could be introduced 
for one of the modules, to exist in parallel with the 
existing; the new module instance would be 
chosen so that it already is consistent with the 
instance of the other module (as described for 
exchanging components). The previous example 
in Figure 1a and b is too simple to illustrate the 
need for this, but in Section 4 the industrial case 
will illustrate when this might be needed and 
feasible. Coexisting modules are also further 
discussed in Section 4.1.  

Some introduced changes will cause new 
inconsistencies, that need to be resolved (i.e., this 
activity need to be performed iteratively). 

Activity E-III: Branch Scenarios. As a scenario 
is evolved by applying the operations to it (most often 
according to either of the high-level approaches of 
activities E-I and E-II), there will be occasions where 
it is desired to explore two or more different choices in 
parallel. For example, several of the resolutions 
suggested in activity E-II might make intuitive sense, 
and both choices should be explored. It is then possible 
to copy the scenario, and treat the two copies as 
branches of the same tree, having some choices in 
common but also some different choices.  

Activity E-IV: Evaluate Scenarios. As scenarios 
evolve, they need to be evaluated in order to decide 
which branches to evolve further and which to 
abandon. Towards the end of the process, one will also 
want to evaluate the final alternatives more 
thoroughly, and compare them – both with each other 
and with the pre-specified evaluation criteria and 
boundary conditions (which might at this point be 
reconsidered to some extent). The actual state of the 

systems must be evaluated, i.e., the actually chosen 
module instances plus the modifications to reduce 
inconsistencies). Do the systems contain many shared 
modules? Are the chosen modules the ones desired for 
the future system (richest functionality, highest quality, 
etc.)? Can the system as a whole be expected to meet 
its quality goals? 

2.3.3 Accumulating Information 
As these activities are carried out, there is some 
information that should be stored for use in later 
activities. As operations are performed, information is 
accumulated. Although this information is created as 
part of an operation within a specific scenario, the 
information can be used in all other scenarios; this idea 
would be particularly useful when implemented in a 
tool. We envision that any particular project or tool 
would define its own formats and types of information; 
in the following we give some suggestions of such 
useful information and how it would be used.  

Throughout the exploratory activities, it would be 
useful to have some ranking of modules readily 
available, such as “EventViewA is preferred over 
EventViewB because it has higher quality”. A tool 
could use this information to color the chosen modules 
to show how well the outlined alternatives fit the 
desired future system. 

For activity E-II “Resolve Inconsistencies”, it 
would be useful to have information about e.g., which 
module could or could not coexist in parallel. Also, 
some information should be stored that is related to 
how the inconsistencies are solved. There should at 
least be a short textual description of what an 
adaptation means in practice. Other useful information 
would be the efforts and costs associated with each 
acquirement and adaptation; if this information is 
collected by a tool, it becomes possible to extract a list 
of actions required per scenario, including the textual 
descriptions of adaptations and effort estimates. It is 
also possible to reason about how much of the efforts 
required that are “wasted”, that is: is most of the effort 
related to modifications that actually lead towards the 
desired future system, or is much effort required to 
make modules fit only for the next delivery and then 
discarded? The evaluation criteria and boundary 
conditions mentioned in Section 2.2 could also be used 
by a tool to aid or guide the evaluation in the activity 
E-IV. 

3. An Industrial Case Study 
In a previous multiple case study on the topic of in-
house integration, the nine cases in six organizations 
had implemented different integration solutions [10]. 
We returned to the one case that had clearly chosen the 
merge strategy and successfully implemented it 



(although it is not formally released yet); in previous 
publications this case is labelled “case F2”. The fact 
that this was one case out of nine indicates that the 
prerequisites for a merge are not always fulfilled, but 
also that they are not unrealistic (two more cases 
involved reusing parts from several existing systems in 
a way that could be described as a merge). To motivate 
the applicability of the proposed method, this section 
describes the events of an industrial case and places 
them in the context of our method.  

3.1 Research Method 
This part of the research is thus a single case study 
[17]. Our sources of information have been face-to-
face interviews with the three main developers on the 
US side (there is no title “architect” within the 
company) and the two main developers on the Swedish 
side, as well as the high-level documentation of the 
Swedish system. All discussion questions and answers 
are published together with more details on the study’s 
design in a technical report [9].  

Although the reasoning of the case follows the 
method closely, the case also demonstrates some 
inefficiency due to not exploring the technical 
implications of the merge fully beforehand. It therefore 
supports the idea of the method being employed to 
analyze and explore merge alternatives early, before 
committing to a particular strategy for the in-house 
integration (merge or some other strategy). 

3.2 The Case 
The organization in the case is a US-based global 
company that acquired a slightly smaller global 
company in the same business domain, based in 
Sweden. To support the core business, computer 
simulations are conducted. Both sites have developed 
software for simulating 3D physics, containing state-
of-the-art physics models, many of the models also 
developed in-house.  

As the results are used for real-world decisions 
potentially affecting the environment and human lives, 
the simulation results must be accurate (i.e., the output 
must correspond closely to reality). As the simulations 
are carried out off-line and the users are physics 
specialists, many other runtime quality properties of 
the simulation programs are not crucial, such as 
reliability (if the program crashes for a certain input, 
the bug is located and removed), user-friendliness, 
performance, or portability. On the other side, the 
accuracy of the results are crucial.  

Both systems are written in Fortran and consist of 
several hundreds of thousands lines of code, and the 
staff responsible for evolving these simulators are the 
interviewees, i.e., less than a handful on each site. 
There was a strategic decision to integrate or merge the 

systems in the long term. This should be done through 
cooperation whenever possible, rather than as a 
separate up-front project.  

The rest of this section describes the events of the 
case in terms of the proposed activities of the method. 
It should be noted that although the interviewees met 
in a small group to discuss alternatives, they did not 
follow the proposed method strictly (which is natural, 
as the method has been formulated after, and partly 
influenced by, these events).  

Activity P-I: Describe Existing Systems. Both 
existing systems are written in the same programming 
language (Fortran), and it was realized early that the 
two systems have very similar structure, see Figure 
2a). There is a main program (Main) invoking a 
number of physics modules (PX, PY, PZ, …) at 
appropriate times, within two main loops. Before any 
calculations, an initialization module (Init) reads data 
from input files and the internal data structures (DS) 
are initialized. The physics modeled is complex, 
leading to complex interactions where the solution of 
one module affects others in a non-hierarchical 
manner. After the physics calculations are finished, a 
file management module (FM) is invoked, which 
collects and prints the results to file. All these modules 
use a common error handling and logging library (EL), 
and share the same data structures (DS). A merge 
seemed plausible also thanks to the similarities of the 
data models; the two programs model the same reality 
in similar ways. 

Activity P-II: Describe Desired Future 
Architecture. The starting point was to develop a 
common module for one particular aspect of the 
physics (PXnew), as both sides had experienced some 
limitations of their respective current physics models. 
Now being in the same company, it was imperative 
that they would join efforts and develop a new module 
that would be common to both programs; this project 
received some extra integration funding. Independent 
of the integration efforts, there was a common wish on 
both sides to take advantage of newer Fortran 
constructs to improve encapsulation and enforce 
stronger static checks. 

Activity E-I: Introduce Desired Changes. As 
said, the starting point for integration was the module 
PX. Both sides wanted a fundamentally new physics 
model, so the implementation was also completely new 
(no reuse), written by one of the Swedish developers. 
The two systems also used different formats for input 
and output files, managed by file handling modules 
(FMSE and FMUS). The US system chose to 
incorporate the Swedish module for this, which has 
required some changes to the modules using the file 
handling module. 



InitSE

MainSE

PXSE

ELSE FMSEDSSE

Swedish System

PrintSE
...PYSE PZSE InitUS

MainUS

PXUS

ELUS FMUSDSUS

US System

PrintUS
...PYUS PZUS

InitSE

MainSE

PXnew

ELnew FMSEDSSE

Swedish System

PrintSEPYSE PZSE InitUS

MainUS

PXnew

ELnew FMSE

US System

PrintUSPYUS PZUS

ELSE

PXSE

DSnew DSUSDSnew

Init?

Main?

PXnew

ELnew FMSE

Print?...PY? PZ?

DSnew

a) Initial state

b) Current state

c) Future System

... ...

Adaptation set: <MainSE, PXnew> <PXnew, ELnew> <PXnew, DSnew> <MainUS, PXnew> <PYUS, ELnew>
       <PYUS, DSnew> <PZUS, ELnew> <PZUS, DSnew>

 
Figure 2: The current status of the systems of the case. 

Activity E-II: Resolve Inconsistencies. The PX 
module of both systems accesses large data structures 
(DS) in global memory, shared with the other physics 
modules. An approach was tried where adapters were 
introduced between a commonly defined interface and 
the old implementations, but was abandoned as this 
solution became too complex. Instead, a new 
implementation of data structures was introduced. This 
was partially chosen because it gave the opportunity to 

use newer Fortran constructs which made the code 
more structured, and it enabled some encapsulation 
and access control as well as stronger type checking 
than before.  

This led to new inconsistencies that needed to be 
resolved. In the US system, six man-months were 
spent on modifying the existing code to use the new 
data structures. The initialization and printout modules 
remained untouched however; instead a solution was 



chosen where data is moved from the old structures 
(DSSE and DSUS) to the new (DSnew) after the 
initialization module has populated the old structures, 
and data is moved back to the old structures before the 
printout module executes. In the Swedish system, only 
the parts of the data structures that are used by the PX 
module are utilized, the other parts of the program uses 
the old structures; the few data that are used both by 
the PX module and others had to be handled 
separately. 

The existing libraries for error handling and 
logging (EL) would also need some improvements in 
the future. Instead of implementing the new PX 
module to fit the old EL module, a new EL module 
was implemented. The new PX module was built to 
use the new EL module, but the developers saw no 
major problems to let the old EL module continue to 
be used by other modules (otherwise there would be an 
undesirable ripple effect). However, for each internal 
shipment of the PX module, the US staff commented 
away the calls to the EL library; this was the fastest 
way to make it fit. In the short term this was perfectly 
sensible, since the next US release would only be used 
for validating the new model together with the old 
system. However, spending time commenting away 
code was an inefficient way of working, and 
eventually the US site incorporated the EL library and 
modified all other modules to use it; this was not too 
difficult as it basically involved replacing certain 
subroutine calls with others. In the Swedish system, 
the new EL library was used by the new PX module, 
while the existing EL module was used in parallel, to 
avoid modifying other modules that used it. Having 
two parallel EL libraries was not considered a major 
quality risk in the short run. 

Modifying the main loop of each system, to make 
it call the new PX module instead of the old, was 
trivial. In the Swedish system there will be a startup 
switch for some years to come, allowing users to 
choose between the old and the new PX module for 
each execution. This is useful for validation of PXnew 
and is presented as a feature for customers. 

E-III Branch Scenarios. As we are describing the 
actual sequence of events, this activity cannot be 
reported as such, although different alternatives were 
certainly discussed – and even attempted and 
abandoned, as for the data structure adapters. 

E-IV Evaluate Scenarios. This activity is also 
difficult to isolate after the fact, as we have no 
available reports on considerations made. It appears as 
functionality was a much more important factor than 
non-functional (quality) attributes at the module level. 
At system level, concerns about development time 
qualities (e.g., discussions about parallel module 

instances and the impact on maintenance) seem to have 
been discussed more than runtime qualities (possibly 
because runtime qualities in this case are not crucial). 

Figure 2 shows the initial and current state of the 
systems, as well as the desired outlined future system. 
(It is still discussed whether to reuse the module from 
either of the systems or create a new implementation, 
hence the question marks).    

4. Discussion 
This section discusses various considerations to be 
made during the exploration and evaluation, as 
highlighted by the case.  

4.1 Coexisting Modules 
To resolve an inconsistency between two module 
instances, there is the option of allowing two module 
instances (operation 2). Replacing the module 
completely will have cascading effects on the 
consistencies for all edges connected to it (both “used-
by” and “using”), so having several instances has the 
least direct impact in the model (potentially the least 
modification efforts). However, it is not always 
feasible in practice to allow two implementations with 
the same purpose. The installation and runtime costs 
associated with having several modules for the same 
task might be prohibiting if resources are scarce. It 
might also be fundamentally assumed that there is only 
one single instance responsible for a certain 
functionality, e.g., for managing central resources. 
Examples could be thread creation and allocation, 
access control to various resources (hardware or 
software), security, etc. Finally, at development time, 
coexisting components violates the conceptual 
integrity of the system, and results in a larger code 
base and a larger number of interfaces to keep 
consistent during further evolution and maintenance. 
From this point of view, coexisting modules might be 
allowed as a temporary solution for an intermediate 
delivery, while planning for a future system with a 
single instance of each module (as in the case for 
modules EL and DS). However, the case also 
illustrates how the ability to choose either of the two 
modules for each new execution was considered useful 
(PXSE and PXnew in the Swedish system). 

We can see the following types of relationships 
between two particular module instances of the same 
module:  
• Arbitrary usage. Any of the two parallel modules 

may be invoked at any time. This seems 
applicable for library type modules, i.e., modules 
that retains no state but only performs some action 
and returns, as the EL module in the case.  

• Alternating usage. If arbitrary usage cannot be 
allowed, it might be possible to define some rules 



for synchronization that will allow both modules 
to exist in the system. In the case, we saw accesses 
to old and new data structures in a pre-defined 
order, which required some means of 
synchronizing data at the appropriate points in 
time. One could also imagine other, more dynamic 
types of synchronization mechanisms useful for 
other types of systems: a rule stating which 
module to be called depending on the current 
mode of the system, or two parallel processes that 
are synchronized via some shared variables. 
(Although these kinds of solutions could be seen 
as a new module, the current version of the 
method only allows this to be specified as text 
associated to an adaptation.) 

• Initial choice. The services of the modules may 
be infeasible to share between two modules, even 
over time. Someone will need to select which 
module instance to use, e.g., at compile time by 
means of compilation switches, or with an 
initialization parameter provided by the user at 
run-time. This was the case for the PXSE and 
PXnew modules in the Swedish system.  
The last two types of relationships requires some 

principle decision and rules at the system 
(architectural) level, while the signifying feature of the 
first is that the correct overall behaviour of the 
program is totally independent of which module 
instance is used at any particular time.  

4.2 Similarity of Systems 
As described in 2.1.1, the model requires that the 
structures of the existing systems are identical, which 
may seem a rather strong assumption. It is motivated 
by the following three arguments [10]:  
• The previous multiple case study mentioned in 

Section 3.1 strongly suggests that similar 
structures is a prerequisite for merge to make 
sense in practice. That means that if the structures 
are dissimilar, practice has shown that some other 
strategy will very likely be more feasible (e.g., 
involving the retirement of some systems). 
Consequently, there is little motivation to devise a 
method that covers also this situation.  

• We also observed that it is not so unlikely that 
systems in the same domain, built during the same 
era, indeed have similar structures.  

• If the structures are not very similar at a detailed 
level, it might be possible to find a higher level of 
abstraction where the systems are similar. 
A common type of difference, that should not 

pose large difficulties in practice, is if some modules 
and dependencies are similar, and the systems have 
some modules that are only extensions to a common 
architecture. For example, in the example system one 

of the systems could have an additional View module 
(say, a piano roll visualization of the music); in the 
industrial case we could imagine one of the systems to 
have a module modeling one more aspect of physics 
(PW) than the other. However, a simple workaround 
solution in the current version of the method is to 
introduce virtual module instances, i.e., modules that 
do not exist in the real system (which are of course not 
desired in the future system).  

5. Related Work 
There is much literature to be found on the topic of 
software integration. Three major fields of software 
integration are component-based software [16], open 
systems [13], and Enterprise Application Integration, 
EAI [15]. However, we have found no existing 
literature that directly addresses the context of the 
present research: integration or merge of software 
controlled and owned within an organization. These 
existing fields address somewhat different problems 
than ours, as these fields concern components or 
systems complementing each other rather than systems 
that overlap functionally. Also, it is typically assumed 
that components or systems are acquired from third 
parties and that modifying them is not an option, a 
constraint that does not apply to the in-house situation. 
Software reuse typically assumes that components are 
initially built to be reused in various contexts, as 
COTS components or as a reuse program implemented 
throughout an organization [7], but in our context the 
system components were likely not being built with 
reuse in mind.  

It is commonly expressed that a software 
architecture should be documented and described 
according to different views [3,5,6,8]. One frequently 
proposed view is the module view [3,5] (or 
development view [8]), describing development 
abstractions such as layers and modules and their 
relationships. The dependencies between the 
development time artifacts were first defined by Parnas 
[14] and are during ordinary software evolution the 
natural tool to understand how modifications made to 
one component propagate to other.  

The notion of “architectural mismatch” is well 
known, meaning the many types of incompatibilities 
that may occur when assembling components built 
under different assumptions and using different 
technologies [4]. There are some methods for 
automatically merging software, mainly source code 
[1], not least in the context of configuration 
management systems [12]. However, these approaches 
are unfeasible for merging large systems with complex 
requirements, functionality, quality, and stakeholder 
interests. The abstraction level must be higher. 



6. Conclusions and Future Work 
The problem of integrating and merging large complex 
software systems owned in-house is essentially 
unexplored. The method presented in this paper 
addresses the problem of rapidly outlining various 
merge alternatives, i.e., exploring how modules could 
be reused across existing systems to enable an 
evolutionary merge. The method makes visible various 
merge alternatives and enables reasoning about the 
resulting functionality of the merged system as well as 
about the quality attributes of interest (including both 
development time and runtime qualities).  

The method consists of a formal model with a 
loosely defined heuristics-based process on top. The 
goal has been to keep the underlying model as simple 
as possible while being powerful enough to capture the 
events of a real industrial case. One of the main drivers 
during its development has been simplicity, envisioned 
to be used as a decision support tool at a meeting early 
in the integration process, with architects of the 
existing systems. As such, it allows rapid exploration 
of multiple scenarios in parallel. We have chosen the 
simplest possible representation of structure, the 
module view. For simplicity, the method in its current 
version mandates that the systems have identical 
structures. This assumption we have shown is not 
unreasonable but can also be worked around for minor 
discrepancies. The method is designed so that stepwise 
deliveries of the existing systems are made, sharing 
more and more modules, to enable a true evolutionary 
merge.  

Assisted by a tool, it would be possible to 
conveniently record information concerning all 
decisions made during the exploration, for later 
processing and presentation, thus giving an advantage 
over only paper and pen. We are implementing such a 
tool, which already exist as a prototype [11]. It 
displays the graphs of the systems, allows user-
friendly operations, highlights inconsistencies with 
colors, and is highly interactive to support the 
explorative process suggested. The information 
collected, in the form of short text descriptions and 
effort estimations, enables reasoning about subsequent 
implementation activities. For example, how much 
effort is the minimum for a first delivery where some 
module is shared? What parts of a stepwise delivery 
are only intermediate, and how much effort is thus 
wasted in the long term?  

There are several directions for extending the 
method: First, understanding and bridging differences 
in existing data models and technology frameworks of 
the existing systems is crucial for success and should 
be part of a merge method. Second, the model could be 
extended to allow a certain amount of structural 

differences between systems. Third, the module view 
is intended to reveal only static dependencies, but 
other types of relationships are arguably important to 
consider in reality. Therefore, we intend to investigate 
how the method can be extended to include more 
powerful languages, including e.g., different 
dependency types and different adaptation types, and 
extended also to other views.  

6.1 Acknowledgements 
We would like to thank all interviewees and their 
organization for sharing their experiences and allowing 
us to publish them. Also thanks to Laurens Blankers 
for previous collaboration that has led to the present 
paper, and for our discussions on architectural 
compatibility. 

7. References 
 [1]  Berzins V., “Software merge: semantics of 

combining changes to programs”, In ACM 
Transactions on Programming Languages and 
Systems (TOPLAS), volume 16, issue 6, pp. 
1875-1903, 1994. 

 [2]  Buschmann F., Meunier R., Rohnert H., 
Sommerlad P., and Stal M., Pattern-Oriented 
Software Architecture - A System of Patterns, 
ISBN 0-471-95869-7, John Wiley & Sons, 
1996. 

 [3]  Clements P., Bachmann F., Bass L., Garlan D., 
Ivers J., Little R., Nord R., and Stafford J., 
Documenting Software Architectures: Views 
and Beyond, ISBN 0-201-70372-6, Addison-
Wesley, 2002. 

 [4]  Garlan D., Allen R., and Ockerbloom J., 
“Architectural Mismatch: Why Reuse is so 
Hard”, In IEEE Software, volume 12, issue 6, 
pp. 17-26, 1995. 

 [5]  Hofmeister C., Nord R., and Soni D., Applied 
Software Architecture, ISBN 0-201-32571-3, 
Addison-Wesley, 2000. 

 [6]  IEEE Architecture Working Group, IEEE 
Recommended Practice for Architectural 
Description of Software-Intensive Systems, 
IEEE Std 1471-2000, IEEE, 2000. 

 [7]  Karlsson E.-A., Software Reuse : A Holistic 
Approach, Wiley Series in Software Based 
Systems, ISBN 0 471 95819 0, John Wiley & 
Sons Ltd., 1995. 

 [8]  Kruchten P., “The 4+1 View Model of 
Architecture”, In IEEE Software, volume 12, 
issue 6, pp. 42-50, 1995. 

 [9]  Land R., Interviews on Software Systems 
Merge, MRTC report, Mälardalen Real-Time 
Research Centre, Mälardalen University, 2006. 



 [10]  Land R. and Crnkovic I., “Software Systems In-
House Integration: Architecture, Process 
Practices and Strategy Selection”, In 
Information & Software Technology, Accepted 
for publication, 2006. 

 [11]  Land R. and Lakotic M., “A Tool for Exploring 
Software Systems Merge Alternatives”, In 
Proceedings of International ERCIM Workshop 
on Software Evolution , 2006. 

 [12]  Mens T., “A state-of-the-art survey on software 
merging”, In IEEE Transactions on Software 
Engineering, volume 28, issue 5, pp. 449-462, 
2002. 

 [13]  Meyers C. and Oberndorf P., Managing 
Software Acquisition: Open Systems and COTS 
Products, ISBN 0201704544, Addison-Wesley, 
2001. 

 [14]  Parnas D. L., “Designing Software for Ease of 
Extension and Contraction”, In IEEE 
Transaction on Software Engineering, volume 
SE-5, issue 2, pp. 128-138, 1979. 

 [15]  Ruh W. A., Maginnis F. X., and Brown W. J., 
Enterprise Application Integration, A Wiley 
Tech Brief, ISBN 0471376418, John Wiley & 
Sons, 2000. 

 [16]  Wallnau K. C., Hissam S. A., and Seacord R. 
C., Building Systems from Commercial 
Components, ISBN 0-201-70064-6, Addison-
Wesley, 2001. 

 [17]  Yin R. K., Case Study Research : Design and 
Methods (3rd edition), ISBN 0-7619-2553-8, 
Sage Publications, 2003. 

 
 
 

 


	1. Introduction
	2. Software Merge Exploration Method
	2.1 An Explanatory Example
	2.2 The Model
	2.2.1 Concepts and Notation
	2.2.2 Inconsistency
	2.2.3 Scenario Operations

	2.3 The Process
	2.3.1 Preparatory Phase
	2.3.2 Exploratory Phase
	2.3.3 Accumulating Information


	3. An Industrial Case Study
	3.1 Research Method
	3.2 The Case

	4. Discussion
	4.1 Coexisting Modules
	4.2 Similarity of Systems

	5. Related Work
	6. Conclusions and Future Work
	6.1 Acknowledgements

	7. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


